Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruixia Gao is active.

Publication


Featured researches published by Ruixia Gao.


Journal of Chromatography A | 2012

Synthesis and characterization of the core-shell magnetic molecularly imprinted polymers (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed

Xuan Kong; Ruixia Gao; Xiwen He; Langxing Chen; Yukui Zhang

In this study, we present a general method to prepare the core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs) for sulfamethazine (SMZ). The resulting Fe₃O₄@MIPs NPs possess a highly improved imprinting effect, fast adsorption kinetics and high adsorption capacity, and can be applied to extract sulfonamide in the poultry feed. In this protocol, the magnetite NPs were synthesized by co-precipitating Fe²⁺ and Fe³⁺ in an ammonia solution first. Silica was then coated on the Fe₃O₄ NPs using a sol-gel method to obtain silica shell magnetic NPs. Subsequently, the vinyl groups were grated onto silica-modified Fe₃O₄ surface by 3-methacryloyloxypropyltrimethoxysilane. Finally, the MIPs films were formed on the surface of Fe₃O₄@SiO₂ by the copolymerization of vinyl end groups with functional monomer, methacrylic acid, cross-linking agent, ethylene glycol dimethacrylate, the initiator azo-bis-isobutyronitrile and template molecule, sulfamethazine. The morphology, magnetic, adsorption and recognition properties of Fe₃O₄@MIPs NPs were characterized using transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectrometer, vibrating sample magnetometer (VSM) and re-binding experiments. The results showed that the binding sites of Fe₃O₄@MIPs were good accessibility, fast adsorption rate and the maximum adsorption capacity of Fe₃O₄@MIPs to SMZ was 344.8 μg g⁻¹. The selectivity of the obtained Fe₃O₄@MIPs NPs were elucidated by the different rebinding capability of SMZ and structural related sulfonamides in the mixed solution. The results indicated that the Fe₃O₄@MIPs had high imprinting factor 9.5 and significant selectivity. A method was developed for enrichment and determination of SMZ in the poultry feed samples with recoveries of duck and chicken feed ranging from 63.3 to 76.5% and 68.7 to 74.7%, respectively and the relative standard deviations (RSD) (<6.7%).


Journal of Materials Chemistry | 2011

Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core–shell magnetic nanoparticles for the recognition and enrichment of protein

Ruixia Gao; Xuan Kong; Xin Wang; Xiwen He; Langxing Chen; Yukui Zhang

A general method to prepare thin, molecularly imprinted polymer (MIP) coatings on magnetic Fe3O4 nanoparticles (NPs) with a uniform core–shell structure for the recognition and enrichment of protein was developed. Four proteins (bovine serum albumin (BSA, pI = 4.9), bovine hemoglobin (BHb, pI = 6.9), bovine pancreas ribonuclease A (RNase A, pI = 9.4) and lysozyme (Lyz, pI = 11.2)) with different isoelectric points were chosen as the templates. The magnetic protein-MIPs were synthesized by combining surface imprinting and sol–gel techniques. The morphology, adsorption and recognition properties of the magnetic molecularly imprinted NPs were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy and through the use of a vibrating sample magnetometer (VSM). In comparison with the use of Lyz, BSA and RNase A as template proteins, BHb-imprinted Fe3O4 showed the best imprinting effect and the highest adsorption capacity among the four proteins. The as-prepared Fe3O4@BHb-MIPs NPs with a mean diameter of 230 nm were coated with an MIP shell that was 10 nm thick, which enabled the Fe3O4@BHb-MIPs to easily reach adsorption equilibrium. A high magnetic saturation value of 25.47 emu g−1 for Fe3O4@BHb-MIPs NPs was obtained, which endowed the adsorbent with the convenience of magnetic separation under an external magnetic field. The resultant Fe3O4@BHb-MIPs NPs could not only selectively extract a target protein from mixed proteins but also specifically capture the protein BHb from a real sample of bovine blood. In addition, different batches of magnetic MIPs showed good reproducibility and reusability for at least six repeated cycles.


Journal of Materials Chemistry B | 2014

Combination of surface imprinting and immobilized template techniques for preparation of core–shell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin

Ruixia Gao; Xinru Mu; Yi Hao; Lili Zhang; Junjie Zhang; Yuhai Tang

In this work, the core-shell bovine hemoglobin (BHb)-imprinted superparamagnetic nanoparticles (Fe3O4@BHb-MIPs) were synthesized by combining for the first time a surface imprinting technique and a two-step immobilized template strategy. Initially, amino-functionalized Fe3O4 nanoparticles (Fe3O4@NH2) were synthesized directly through a facile one-pot hydrothermal method. Next, BHb was immobilized on the surface of Fe3O4@NH2 through non-covalent interactions. Then, siloxane co-polymerization on the Fe3O4@NH2-protein complex surface resulted in a polymeric network molded around BHb which then became further immobilized. Finally, a thin polymer layer with specific recognition cavities for BHb was formed on the surface of Fe3O4@NH2 after the removal of the template protein. The morphology and structure property of the prepared magnetic nanoparticles were characterized by transmission electronic microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), and vibrating sample magnetometer (VSM). To obtain the best selectivity and binding performance, the polymerization and adsorption conditions were investigated in detail. Under the optimized conditions, the Fe3O4@BHb-MIPs exhibited fast adsorption kinetics, large binding capacity, significant selectivity, and favorable reproducibility. The resultant Fe3O4@BHb-MIPs could not only specifically extract BHb from a mixed standard protein mixture, but also selectively enriched BHb from a real bovine blood sample. In addition, the synthetic process was quite simple and the stability and regeneration of the Fe3O4@BHb-MIPs were also satisfactory.


Journal of Chromatography A | 2010

Synthesis and evaluation of molecularly imprinted core-shell carbon nanotubes for the determination of triclosan in environmental water samples

Ruixia Gao; Xuan Kong; Fuhai Su; Xiwen He; Langxing Chen; Yukui Zhang

Synthetic core-shell molecularly imprinted polymers (MIPs) were prepared for the extraction of trace triclosan in environmental water samples. The synthesis process combined a surface molecular imprinting technique with a sol-gel process based on carbon nanotubes (CNTs) coated with silica. The morphology and structure of the products were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The adsorption properties of the polymers were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The prepared imprinted materials exhibited fast kinetics, high capacity and favorable selectivity. The process of synthesis was quite simple and different batches of MIPs and non-imprinted polymers (NIPs) showed good reproducibility in the template binding. The feasibility of determination of triclosan from real samples was testified using spiked river and lake water samples. The recoveries of river water and lake water samples were ranged from 92.1 to 95.3% and 90.7 to 93.6%, respectively, when the environmental water samples were spiked with 0.1, 0.3, and 0.5 μg L(-1) of TCS. In addition, the reusability of MIPs and NIPs without any deterioration in capacity was demonstrated for at least 10 repeated cycles.


Food Chemistry | 2016

A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk.

Ruixia Gao; Xihui Cui; Yi Hao; Lili Zhang; Dechun Liu; Yuhai Tang

In this work, we prepared molecularly imprinted polymers (MIPs) combining surface molecular imprinting technique and magnetic separation for separation and determination of 17β-estradiol (E2) from milk. During the synthesis process, the acryloyl chloride was specially used to graft double bonds on Fe3O4 nanoparticles and served as co-functional monomer cooperating with acrylamide. The morphology, structure property, and the best polymerization and adsorption conditions of the prepared magnetic nanoparticles were investigated in detail. The obtained nanomaterials displayed high adsorption capacity of 12.62mg/g, fast equilibrium time of 10min, and satisfactory selectivity for target molecule. Whats more, the MIPs was successfully applied as sorbents to specifically separate and enrich E2 from milk with a relatively high recovery (88.9-92.1%), demonstrating the potential application of the MIPs as solid phase extractant for rapid, highly-efficient, and cost-effective sample analysis.


Talanta | 2011

Preparation and characterisation of core-shell CNTs@MIPs nanocomposites and selective removal of estrone from water samples.

Ruixia Gao; Xiaoqian Su; Xiwen He; Langxing Chen; Yukui Zhang

This paper reports the preparation of carbon nanotubes (CNTs) functionalized with molecularly imprinted polymers (MIPs) for advanced removal of estrone. CNTs@Est-MIPs nanocomposites with a well-defined core-shell structure were obtained using a semi-covalent imprinting strategy, which employed a thermally reversible covalent bond at the surface of silica-coated CNTs for a large-scale production. The morphology and structure of the products were characterised by transmission electron microscopy and Fourier transform infrared spectroscopy. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results demonstrate that the imprinted nanocomposites possess favourable selectivity, high capacity and fast kinetics for template molecule uptake, yielding an adsorption capacity of 113.5 μmol/g. The synthetic process is quite simple, and the different batches of synthesized CNTs@Est-MIPs nanocomposites showed good reproducibility in template binding. The feasibility of removing estrogenic compounds from environmental water using the CNTs@Est-MIPs nanocomposites was demonstrated using water samples spiked with estrone.


Journal of Chromatography A | 2015

Water-compatible magnetic imprinted nanoparticles served as solid-phase extraction sorbents for selective determination of trace 17beta-estradiol in environmental water samples by liquid chromatography

Yi Hao; Ruixia Gao; Lu Shi; Dechun Liu; Yuhai Tang; Zengjun Guo

Endocrine disrupting compounds (EDCs) are a potential risk for wildlife and humans for their existence in water. The efficient extraction and clean-up steps are required before detection of low concentration levels of EDCs. In this work, a novel water-compatible magnetic molecularly imprinted nanoparticles is synthesized for the selective extraction of 17β-estradiol (E2) in environmental water samples. The preparation is carried out by introducing aldehyde groups to the surface of amino-functionalized magnetic nanoparticles through a simple one-step modification, followed by copolymerization of functional monomer gelatin and template E2 via surface imprinting technique. The gelatin with abundant active groups could not only act as functional monomer reacting with template, but also assemble covalently at the surface of magnetic nanoparticles. At the same time, gelatin would improve the water-compatibility of imprinted materials for attaining high extraction efficiency. To obtain high imprinting effect, the preparation conditions are optimized in detail using Central composite design-response surface methodology. The resultant polymers have uniform spherical shape with a shell thickness of about 8nm, stable crystalline form, and super-paramagnetic property. Meanwhile, the obtained polymers have high capacity of 12.87mgg(-1) and satisfactory selectivity to template molecule. To testify the feasibility of the magnetic imprinted polymers in sample pretreatment, a method for determination of trace E2 in environmental water samples was set up by combination of solid-phase extraction (SPE) using the prepared polymers as sorbents and HPLC for rapid isolation and determination of E2. The limit of detection of proposed method is 0.04ngmL(-1), the intra- and inter-day relative standard deviations (RSDs) are less than 4.6% and 5.7%, respectively. The recoveries of E2 from environmental water samples are in the range from 88.3% to 99.1% with the RSDs less than 7.2%.


Journal of Materials Chemistry B | 2014

Specific recognition of bovine serum albumin using superparamagnetic molecularly imprinted nanomaterials prepared by two-stage core–shell sol–gel polymerization

Ruixia Gao; Xinru Mu; Junjie Zhang; Yuhai Tang

A novel type of uniform magnetic imprinted nanomaterial for the recognition of bovine serum albumin (BSA) was prepared by anchoring MIP shells on the surface of silica deposited Fe3O4 NPs via a surface imprinting process and two-stage core-shell sol-gel polymerization. The resulting magnetic nanomaterials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and a vibrating sample magnetometer (VSM). The measurements indicated that the as-synthesized nanospheres exhibited good dispersion, high crystallinity, and satisfactory superparamagnetic properties. Moreover, the obtained Fe3O4@BSA-MIPs had a high saturation magnetization (43.82 emu g-1), which allowed them to be easily separated from solution by means of an external magnetic field. The thickness of the imprinted polymer layer was approximately 5 nm, which would be effective for the mass transport between the solution and the surface of Fe3O4@BSA-MIPs. The kinetic adsorption experiment showed that the imprinted nanomaterials could reach equilibrium within 15 min and be well described by the second-order kinetics model, indicating chemical adsorption might be the rate-limiting step. Meanwhile, the imprinting factor and selectivity coefficient of the Fe3O4@BSA-MIPs were as high as 16.4 and 4.65, displaying excellent selectivity towards BSA. In addition, the resulting imprinted polymers were without obvious deterioration after ten adsorption-desorption cycles and different batches of which exhibited excellent reproducibility. Successful application in the selective separation and enrichment of BSA from a bovine blood sample and good recovery after a reasonably mild elution suggested that the Fe3O4@BSA-MIPs could specifically capture BSA from a real complex matrix and had potential value in practical applications.


RSC Advances | 2014

Specific removal of protein using protein imprinted polydopamine shells on modified amino-functionalized magnetic nanoparticles

Ruixia Gao; Lili Zhang; Yi Hao; Xihui Cui; Yuhai Tang

Thin imprinted shells over functionalized magnetic nanoparticles is an effective solution to weaken mass transfer resistance, achieve high binding capacity, and attain rapid separation. In this work, a simple, green, and effective approach was developed to imprint bovine serum albumin (BSA) on the surface of amino-modified Fe3O4 nanoparticles (Fe3O4@NH2) using dopamine as monomer through a two-step immobilized template strategy. The results of X-ray diffraction and vibrating sample magnetometry indicated that the as-synthesized nanomaterials exhibited high crystallinity and satisfactory superparamagnetic properties. Transmission electron microscopy and Fourier transform infrared spectroscopy of the products showed that polydopamine shells successfully attached onto Fe3O4@NH2. The polydopamine shells with a thickness of about 10 nm enable the template recognition sites to be accessed easily, and exhibit fast kinetics and high adsorption capacity in aqueous solution. Meanwhile, an excellent selectivity towards BSA has been presented when bovine hemoglobin (BHb), transferrin, and immunoglobulin G (IgG) were employed as competitive proteins. Good recovery after a reasonably mild elution and successful capture of the target protein from a real sample of bovine blood suggests its potential value in practical applications. In addition, the resultant polymers were stable and had no obvious deterioration after six adsorption–regeneration cycles. The versatility of the proposed method has also been verified by choosing four other proteins with different isoelectric points as the templates.


Food Chemistry | 2016

Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles

Yi Hao; Ruixia Gao; Dechun Liu; Gaiyan He; Yuhai Tang; Zengjun Guo

In this paper, the novel hydrophilic magnetic molecularly imprinted nanoparticles were developed for selective separation and determination of chlorogenic acid in aqueous fruit juices. The polymers were prepared by using amino-functionalized magnetic nanoparticles as carriers, branched polyethyleneimine as functional monomer, and chlorogenic acid as template molecule. Branched polyethyleneimine with abundant active amino groups could react with template sufficiently, and its unique dendritic structure may amplify the number of the imprinted cavities. Meanwhile, it would improve the hydrophilicity of imprinted materials for attaining high extraction efficiency. The resulted polymers exhibit fast kinetics, high adsorption capacity, and favorable selectivity. In addition, the obtained nanoparticles were used as solid-phase extraction sorbents for selective isolation and determination of chlorogenic acid in peach, apple, and grape juices (0.92, 4.21, and 0.75 μg mL(-1), respectively).

Collaboration


Dive into the Ruixia Gao's collaboration.

Top Co-Authors

Avatar

Yuhai Tang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Yi Hao

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Dechun Liu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Lili Zhang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Xihui Cui

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Gaiyan He

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Junjie Zhang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoshuang Tang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge