Ruixue Liu
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruixue Liu.
Langmuir | 2008
Ruixue Liu; P. De Leonardis; Francesco Cellesi; Nicola Tirelli; Brian R. Saunders
In this work temperature-triggered association and gel formation within aqueous solutions of a new family of cationic poly( N-isopropyl acrylamide) (PNIPAm) graft copolymers have been investigated. Five copolymers were synthesized using aqueous atom transfer radical polymerization (ATRP) involving a macroinitiator based on quaternarized N, N-dimethylaminoethyl methacrylate units (DMA+). The PDMA+) x - g-(PNIPAmn)y copolymers have x and y values that originate from the macroinitiator; values for n correspond to the PNIPAm arm length. The copolymer solutions exhibited temperature-triggered formation of nanometer-sized aggregates at the cloud point temperature, which was 33-34 degrees C. The aggregates were investigated using variable-temperature turbidity, hydrodynamic diameter, and electrophoretic mobility measurements. The aggregates were clearly evident using SEM and flowerlike or spherical morphologies were observed. Variable-temperature electrophoretic mobility measurements revealed that the zeta potentials of the aggregates increased with DMA+ content. A study of the effect of added NaNO3 showed that electrostatic interactions controlled the size of the aggregates. The concentrated graft copolymer solutions showed temperature-triggered gelation when the copolymer concentrations exceeded 5 wt %, Fluid-to-gel phase diagrams were constructed. It was found that electrostatic interactions also controlled the gelation temperature. A correlation was found between aggregate size and the minimum copolymer concentration needed to form a gel. A mechanism for the temperature-triggered structural changes leading to the formation of aggregates (in dilute solution) or gels (in concentrated solutions) is proposed.
Journal of Colloid and Interface Science | 2010
Michael Fraylich; Ruixue Liu; Stephen M. Richardson; Pauline Baird; Judith A. Hoyland; A. J. Freemont; Cameron Alexander; Kevin M. Shakesheff; Francesco Cellesi; Brian R. Saunders
In this study the properties of poly(D,L-lactide-co-glycolide) (PLGA) dispersions containing a thermoresponsive cationic copolymer were investigated. The PLGA dispersions were prepared by interfacial deposition in aqueous solution and were rendered thermoresponsive by addition of a cationic poly(N-isopropyl acrylamide) (PNIPAm) graft copolymer. The copolymers used had the general composition PDMA(x)(+)-g-(PNIPAm(n))(y). DMA(+) is quarternarized N,N-dimethylaminoethyl methacrylate. The PDMA(x)(+)-g-(PNIPAm(n))(y) copolymers have x and y values that originate from the macroinitiator used for their preparation; values for n correspond to the PNIPAm arm length. The thermoresponsive dispersions were characterised using photon correlation spectroscopy, turbidity measurements and electrophoretic mobility measurements. A strong electrostatic attraction between the anionic PLGA particles and cationic copolymer was present and the dispersions showed thermally-triggered gelation at total polymer volume fractions as low as 0.015. These new PLGA gels, which formed at about 32 degrees C, had elastic modulus values that could be controlled using dispersion composition. Scanning electron micrographs of the gels showed high porosity and interconnectivity of elongated pores. Remarkably, the gels were flexible and had critical yield strains as high as 160%. The ability of the gels to support growth of bovine nucleus pulposus cells was investigated using two-dimensional cell culture. The cells proliferated and remained viable on the gels after 3days. The results suggest that this general family of biodegradable thermogelling PLGA dispersions, introduced here for the first time, may have longer-term application as an injectable colloidal cell delivery system.
Langmuir | 2009
Ruixue Liu; Nicola Tirelli; Francesco Cellesi; Brian R. Saunders
In this work, temperature-triggered gelation of aqueous laponite dispersions containing a cationic poly(N-isopropylacrylamide) (PNIPAm) graft copolymer was investigated. The copolymer used was PDMA(+)(30)-g-(PNIPAm(210))(14) [Liu et al. Langmuir 2008, 24, 7099]. DMA(+) is quarternarized N,N-dimethylaminoethyl methacrylate. The presence of small concentrations of laponite enabled temperature-triggered gel formation to occur at low copolymer concentrations (e.g., 1 wt %). Dynamic rheological measurements of the gels showed that they had storage modulus values of up to 400 Pa when the total solid volume fraction (polymer and laponite) was only about 0.02. The storage modulus was dependent on both the temperature and the composition of the dispersion used for preparation. The key component that provided the temperature-triggered gels with their elasticity was found to be self-assembled nanocomposite (NC) sheets. These NC sheets spontaneously formed at room temperature upon addition of laponite to the copolymer solution. The NC sheets had lateral dimensions on the order of hundreds of micrometers and a thickness of a few micrometers. The NC sheets were present within the temperature-triggered gels and formed elastically effective chains. The NC sheets exhibited temperature-triggered contraction with a contraction onset temperature of 27 degrees C. A conceptual model is proposed to qualitatively explain the relationship between gel elasticity and dispersion composition.
Journal of Colloid and Interface Science | 2009
Ruixue Liu; Brian R. Saunders
In this study we investigate triggered particle capture at substrates containing adsorbed thermally responsive graft copolymers. The copolymers used were PDMA(x)(+)-g-(PNIPAm(n))(y), where DMA(+) is quaternized N,N-dimethylaminoethyl methacrylate and NIPAm is N-isopropylacrylamide. The x and y values originate from the macroinitiator used for copolymer preparation. In this study the copolymers are adsorbed onto two different substrates: quartz microscope slides and microporous, high surface area carbon foam. The substrates were coated with a layer of calcined laponite. The laponite acted as a conditioning layer and promoted strong adsorption of the copolymer. The hydrophobicity of the thermoresponsive surfaces was probed using variable-temperature contact angle measurements. The contact angles generally increased considerably upon increasing the temperature to above the lower critical solution temperature (LCST) of the copolymers. The ability of the thermoresponsive surfaces to capture dispersed particles was investigated using anionic and cationic polystyrene (PS) particles. PDMA(30)(+)-g-(PNIPAm(210))(14) was the most effective copolymer in terms of providing high capture efficiencies of anionic PS particles using temperature as the trigger. The thermoresponsive surfaces strongly held the anionic PS particles even when cooled to below the LCST. The relationships between copolymer structure and particle capture efficiency are discussed. The new approach used here for preparation thermoresponsive surfaces is potentially scalable to high volume applications.
Journal of Colloid and Interface Science | 2009
Ruixue Liu; P. De Leonardis; Nicola Tirelli; Brian R. Saunders
In this study we investigate thermally-responsive surfaces prepared by grafting PNIPAm from a cationic macroinitiator (MI) that was adsorbed onto a range of anionic substrates. The substrates used were mica, glass, quartz and high surface area carbon foam. The carbon foam was rendered thermally responsive by first coating it with a layer of calcined laponite particles. PNIPAm brushes were grown from the substrates using surface-initiated atom transfer radical polymerisation. The thermally-responsive PNIPAm layers were characterised in detail at room temperature and 50 degrees C using atomic force microscopy (AFM) and contact angle measurements. The surfaces changed from being non-adhesive to adhesive when the temperature was increased to 50 degrees C. Youngs modulus values and adhesive force values are reported. Particle capture experiments involving dispersed polystyrene or poly(BD/MAA) (butadiene and methacrylic acid) particles were conducted. High extents of particle capture were observed. It was shown that the highest extents of thermally-triggered particle capture at 50 degrees C occurred for surfaces that exhibited the largest increases in contact angle upon increasing the temperature. Importantly, thermally-triggered capture for both anionic polystyrene and poly(BD/MAA) particles was shown to be partially reversible with up to 30% of the captured particles released during cooling. This is the first time that significant reversibility of thermally-triggered capture of polymer particles has been reported.
Langmuir | 2011
Nur Nabilah Shahidan; Ruixue Liu; Francesco Cellesi; Cameron Alexander; Kevin M. Shakesheff; Brian R. Saunders
Thermoresponsive copolymers continue to attract a great deal of interest in the literature. In particular, those based on ethylene oxide-containing methacrylates have excellent potential for biomaterial applications. Recently, some of us reported a study of thermoresponsive cationic graft copolymers containing poly(N-isopropylacrylamide), PNIPAm, (Liu et al., Langmuir, 24, 7099). Here, we report an improved version of this new family of copolymers. In the present study, we replaced the PNIPAm side chains with poly(2-(2-methyoxyethoxy)ethylmethacrylate), PMeO(2)MA. These new, nonacrylamide containing, cationic graft copolymers were prepared using atom transfer radical polymerization (ATRP) and a macroinitiator. They contained poly(trimethylamonium)-aminoethyl methacrylate and PMeO(2)MA, i.e., PTMA(+)(x)-g-(PMeO(2)MA(n))(y). They were investigated using variable-temperature turbidity, photon correlation spectroscopy (PCS), electrophoretic mobility, and (1)H NMR measurements. For one system, four critical temperatures were measured and used to propose a mechanism for the thermally triggered changes that occur in solution. All of the copolymers existed as unimolecular micelles at 20 °C. They underwent reversible aggregation with heating. The extent of aggregation was controlled by the length of the side chains. TEM showed evidence of micellar aggregates. The thermally responsive behaviors of our new copolymers are compared to those for the cationic PNIPAm graft copolymers reported by Liu et al. Our new cationic copolymers retained their positive charge at all temperatures studied, have high zeta potentials at 37 °C, and are good candidates for conferring thermoresponsiveness to negatively charged biomaterial surfaces.
Soft Matter | 2012
Ruixue Liu; Jennifer M. Saunders; Tony J. Freemont; Brian R. Saunders
Doubly crosslinked microgels (DX MGs) are hydrogels composed of covalently interlinked microgels. They are injectable and have potential application in soft tissue repair. Simple methods for tuning their mechanical properties are required. Here, we investigate the effect of added polyelectrolyte (polycations or a polyanion) as well as NaCl on the mechanical properties of the gels for the first time. Addition of polycations improved ductility and decreased the storage modulus (G′) of the DX MG–polyelectrolyte complex (DX MG–PECs) gels. The best DX MG–PEC gel had a yield strain (γc) of 109%, which is the highest reported to date for any DX MG. Furthermore, our DX MG–PEC gels were robust and maintained high G′ values as well as good ductility when swollen at pH = 7.5. The DX MG–PEC gels with improved ductility contained less than 10% polycation. We also investigated the effect of addition of NaCl solution during DX MG and DX MG–PEC preparation. This caused remarkable increases in both G′ and ductility. The best gel had a G′ of 300 kPa which is the highest elasticity reported for a DX MG to date. Addition of linear polyacrylic acid during DX MG preparation also increased the G′ values. This study has provided three new simple methods for tuning the mechanical properties of DX MGs Because the MGs used here belong to a broad class of polymer colloids the results obtained in this study should be generally applicable.
Journal of Colloid and Interface Science | 2010
Ruixue Liu; Nicola Tirelli; Francesco Cellesi; Brian R. Saunders
Colloidal hybrids comprise organic and inorganic components and are attracting considerable attention in the literature. Recently, we reported hybrid anisotropic microsheets that formed thermoresponsive gels in polymer solutions [Liu et al., Langmuir, 25, 490, 2009]. Here, we investigate the composition and properties of these hybrid colloids themselves in detail for the first time. Three different cationic PNIPAm (N-isopropylacrylamide) graft copolymers and two inorganic nanoparticle types (laponite and Ludox silica) were used to prepare a range of hybrids. Anisotropic microsheets only formed when laponite particles were added to the copolymer implying directed self-assembly. Aqueous dispersions of the microsheets spontaneously formed gels at room temperature and these gels were thermoresponsive. They represent a new class of gel forming colloid and are termed thermoresponsive gel forming hybrids. The compositions of the hybrids were determined from thermogravimetric analysis and those that gave gel forming behaviour identified. Variable-temperature rheology experiments showed that the elasticity of the gels increased linearly with temperature. The reversibility of the thermally-triggered changes in gel elasticity was investigated. The concentration dependence of the rheology data was well described by elastic percolation scaling theory and the data could be collapsed onto a master curve. The concentration exponent for the elastic modulus was 2.5. The strong attractive interactions that exist between the dispersed gel forming hybrids was demonstrated by the formation of stable thermoresponsive hybrid hydrogels through casting of hybrid dispersions.
Langmuir | 2013
Nur Nabilah Shahidan; Ruixue Liu; Sineenat Thaiboonrod; Cameron Alexander; Kevin M. Shakesheff; Brian R. Saunders
We demonstrate a new, scalable, simple, and generally applicable two-step method to prepare hollow colloidosomes. First, a high volume fraction oil-in-water emulsion was prepared. The oil phase consisted of CH2Cl2 containing a hydrophobic structural polymer, such as polycaprolactone (PCL) or polystyrene (PS), which was fed into the water phase. The water phase contained poly(vinylalcohol), poly(N-isopropylacrylamide), or a range of cationic graft copolymer surfactants. The emulsion was rotary evaporated to rapidly remove CH2Cl2. This caused precipitation of PCL or PS particles which became kinetically trapped at the periphery of the droplets and formed the shell of the hollow colloidosomes. Interestingly, the PCL colloidosomes were birefringent. The colloidosome yield increased and the polydispersity decreased when the preparation scale was increased. One example colloidosome system consisted of hollow PCL colloidosomes stabilized by PVA. This system should have potential biomaterial applications due to the known biocompatibility of PCL and PVA.
Colloid and Polymer Science | 2009
Ruixue Liu; Michael Fraylich; Brian R. Saunders