Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruiyu Xie is active.

Publication


Featured researches published by Ruiyu Xie.


Cell Metabolism | 2012

Human β Cell Transcriptome Analysis Uncovers lncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes

Ignasi Moran; Ildem Akerman; Martijn van de Bunt; Ruiyu Xie; Marion Benazra; Takao Nammo; Luis Arnes; Nikolina Nakić; Javier García-Hurtado; Santiago A. Rodríguez-Seguí; Lorenzo Pasquali; Claire Sauty-Colace; Anthony Beucher; Raphael Scharfmann; Joris van Arensbergen; Paul Johnson; Andrew Berry; Clarence Lee; Timothy T. Harkins; Valery Gmyr; François Pattou; Julie Kerr-Conte; Lorenzo Piemonti; Thierry Berney; Neil A. Hanley; A L Gloyn; Lori Sussel; Linda Langman; Kenneth L. Brayman; Maike Sander

A significant portion of the genome is transcribed as long noncoding RNAs (lncRNAs), several of which are known to control gene expression. The repertoire and regulation of lncRNAs in disease-relevant tissues, however, has not been systematically explored. We report a comprehensive strand-specific transcriptome map of human pancreatic islets and β cells, and uncover >1100 intergenic and antisense islet-cell lncRNA genes. We find islet lncRNAs that are dynamically regulated and show that they are an integral component of the β cell differentiation and maturation program. We sequenced the mouse islet transcriptome and identify lncRNA orthologs that are regulated like their human counterparts. Depletion of HI-LNC25, a β cell-specific lncRNA, downregulated GLIS3 mRNA, thus exemplifying a gene regulatory function of islet lncRNAs. Finally, selected islet lncRNAs were dysregulated in type 2 diabetes or mapped to genetic loci underlying diabetes susceptibility. These findings reveal a new class of islet-cell genes relevant to β cell programming and diabetes pathophysiology.


Cell Stem Cell | 2013

Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells.

Ruiyu Xie; Logan J. Everett; Hee-Woong Lim; Nisha A. Patel; Jonathan Schug; Evert Kroon; Olivia Kelly; Allen Wang; Kevin A. D’Amour; Allan J. Robins; Kyoung-Jae Won; Klaus H. Kaestner; Maike Sander

Embryonic development is characterized by dynamic changes in gene expression, yet the role of chromatin remodeling in these cellular transitions remains elusive. To address this question, we profiled the transcriptome and select chromatin modifications at defined stages during pancreatic endocrine differentiation of human embryonic stem cells. We identify removal of Polycomb group (PcG)-mediated repression on stage-specific genes as a key mechanism for the induction of developmental regulators. Furthermore, we discover that silencing of transitory genes during lineage progression associates with reinstatement of PcG-dependent repression. Significantly, in vivo- but not in vitro-differentiated endocrine cells exhibit close similarity to primary human islets in regard to transcriptome and chromatin structure. We further demonstrate that endocrine cells produced in vitro do not fully eliminate PcG-mediated repression on endocrine-specific genes, probably contributing to their malfunction. These studies reveal dynamic chromatin remodeling during developmental lineage progression and identify possible strategies for improving cell differentiation in culture.


Cell Stem Cell | 2015

Epigenetic Priming of Enhancers Predicts Developmental Competence of hESC-Derived Endodermal Lineage Intermediates

Allen Wang; Feng Yue; Yan Li; Ruiyu Xie; Thomas Harper; Nisha A. Patel; Kayla Muth; Jeffrey Palmer; Yunjiang Qiu; Jinzhao Wang; Dieter K. Lam; Jeffrey C. Raum; Doris A. Stoffers; Bing Ren; Maike Sander

Embryonic development relies on the capacity of progenitor cells to appropriately respond to inductive cues, a cellular property known as developmental competence. Here, we report that epigenetic priming of enhancers signifies developmental competence during endodermal lineage diversification. Chromatin mapping during pancreatic and hepatic differentiation of human embryonic stem cells revealed the en masse acquisition of a poised chromatin state at enhancers specific to endoderm-derived cell lineages in gut tube intermediates. Experimentally, the acquisition of this poised enhancer state predicts the ability of endodermal intermediates to respond to inductive signals. Furthermore, these enhancers are first recognized by the pioneer transcription factors FOXA1 and FOXA2 when competence is acquired, while subsequent recruitment of lineage-inductive transcription factors, such as PDX1, leads to enhancer and target gene activation. Together, our results identify the acquisition of a poised chromatin state at enhancers as a mechanism by which progenitor cells acquire developmental competence.


Development | 2012

A Sox9/Fgf feed-forward loop maintains pancreatic organ identity

Philip A. Seymour; Hung Ping Shih; Nisha A. Patel; Kristine K. Freude; Ruiyu Xie; Christopher J. Lim; Maike Sander

All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts.


Drug Metabolism Reviews | 2006

Ros-Induced Histone Modifications and their Role in Cell Survival and Cell Death

Terrence J. Monks; Ruiyu Xie; Kulbhushan Tikoo; Serrine S. Lau

Much is known about the distal DNA damage repair response. In particular, many of the enzymes and auxiliary proteins that participate in DNA repair have been characterized. In addition, knowledge of signaling pathways activated in response to DNA damage is increasing. In contrast, comparatively less is known of DNA damage-sensing molecules or of the specific alterations to chromatin structure recognized by such DNA damage sensors. Thus, precisely how chromatin structure is altered in response to DNA damage and how such alterations regulate DNA repair processes remain important unanswered questions. In vertebrates, phosphorylation of the histone variant H2A.X occurs rapidly after double-strand break formation, extends over megabase chromatin domains, and is required for stable accumulation of repair proteins at damage foci. We have shown that reactive oxygen species (ROS)-induced DNA single-strand breaks induce the incorporation of 32P specifically into histone H3. ADP-Ribosylation of histones may stimulate local chromatin relaxation to facilitate the repair process, and, indeed, histone ribosylation preceded DNA damage-induced histone H3 phosphorylation. However, H3 phosphorylation occurred concomitant with overall chromatin condensation, as revealed by decreased sensitivity of chromatin to digestion by micrococcal nuclease and by DAPI staining of nuclei. Inhibitors of the ERK and p38MAPK pathways and inhibition of poly(ADP-ribose) polymerase all reduced ROS-induced H3 phosphorylation, chromatin condensation, and cell death. Precisely how changes in the post-translational modification of histone H3 regulate the survival response remains unclear. Attempts to determine the precise site of histone H3 phosphorylation, putative histone H3 kinases, and histone H3 interacting proteins are underway.


PLOS ONE | 2012

Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells.

Talitha van der Meulen; Ruiyu Xie; Olivia Kelly; Wylie Vale; Maike Sander; Mark O. Huising

The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies.


Cell Reports | 2015

A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells.

Hung Ping Shih; Philip A. Seymour; Nisha A. Patel; Ruiyu Xie; Allen Wang; Patrick P. Liu; Gene W. Yeo; Mark A. Magnuson; Maike Sander

The generation of pancreas, liver, and intestine from a common pool of progenitors in the foregut endoderm requires the establishment of organ boundaries. How dorsal foregut progenitors activate pancreatic genes and evade the intestinal lineage choice remains unclear. Here, we identify Pdx1 and Sox9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates pancreatic fate and sheds light on the gene regulatory circuitry that governs the development of distinct organs from multi-lineage-competent foregut progenitors.


Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2015

A systems view of epigenetic networks regulating pancreas development and β-cell function

Ruiyu Xie; Andrea C. Carrano; Maike Sander

The development of the pancreas and determination of endocrine cell fate are controlled by a highly complex interplay of signaling events and transcriptional networks. It is now known that an interconnected epigenetic program is also required to drive these processes. Recent studies using genome‐wide approaches have implicated epigenetic regulators, such as DNA and histone‐modifying enzymes and noncoding RNAs, to play critical roles in pancreas development and the maintenance of cell identity and function. Furthermore, genome‐wide analyses have implicated epigenetic changes as a casual factor in the pathogenesis of diabetes. In the future, genomic approaches to further our understanding of the role of epigenetics in endocrine cell development and function will be useful for devising strategies to produce or manipulate β‐cells for therapies of diabetes. WIREs Syst Biol Med 2015, 7:1–11. doi: 10.1002/wsbm.1287


European Journal of Pharmaceutical Sciences | 2017

Anti-tumor effects of a ‘human & mouse cross-reactive’ anti-ADAM17 antibody in a pancreatic cancer model in vivo

Jie Ye; Shun Ming Yuen; Gillian Murphy; Ruiyu Xie; Hang Fai Kwok

Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumor amongst all human cancers due to late diagnosis and resistant to treatment with chemotherapy and radiation. Preclinical and clinical studies have revealed that ErbB family for example epidermal growth factor receptor (EGFR) is a validated molecular target for pancreatic cancer prevention and therapy. The ErbB signaling cascade is regulated by a member of the ADAM (a disintegrin and metalloprotease) family, namely ADAM17, by enzymatic cleavage of precursor ligands into soluble cytokines and growth factors. Mouse genetic studies have demonstrated that ADAM17 is required for PDAC development. In this study, we evaluated the anti‐tumor effects of A9(B8) IgG – the first specific ‘human and mouse cross‐reactive’ ADAM17 inhibitory antibody on pancreatic malignant transformation. We found that inhibition of ADAM17 with A9(B8) IgG efficiently suppressed the shedding of ADAM17 substrates both in vivo and in vitro. Furthermore, we demonstrated that administration of A9(B8) IgG significantly suppressed motility in human pancreatic cancer cells and also significantly delayed tumorigenesis in the Pdx1Cre;KrasG12D;Trp53fl/+ PDAC mouse model. Inhibition of ADAM17 with A9(B8) IgG particularly affected the progression of pre‐invasive pancreatic lesions to advanced PDAC in mice. Taken together, the preclinical data presented here will provide a starting point for clinical applications of ADAM17 targeted therapy. Graphical abstract Figure. No Caption available.


Nucleic Acids Research | 2018

Decoding the dynamic DNA methylation and hydroxymethylation landscapes in endodermal lineage intermediates during pancreatic differentiation of hESC

Jia Li; Xinwei Wu; Yubin Zhou; Minjung Lee; Lei Guo; Wei Han; William Mo; Wen-ming Cao; Deqiang Sun; Ruiyu Xie; Yun Huang

Abstract Dynamic changes in DNA methylation and demethylation reprogram transcriptional outputs to instruct lineage specification during development. Here, we applied an integrative epigenomic approach to unveil DNA (hydroxy)methylation dynamics representing major endodermal lineage intermediates during pancreatic differentiation of human embryonic stem cells (hESCs). We found that 5-hydroxymethylcytosine (5hmC) marks genomic regions to be demethylated in the descendent lineage, thus reshaping the DNA methylation landscapes during pancreatic lineage progression. DNA hydroxymethylation is positively correlated with enhancer activities and chromatin accessibility, as well as the selective binding of lineage-specific pioneer transcription factors, during pancreatic differentiation. We further discovered enrichment of hydroxymethylated regions (termed ‘5hmC-rim’) at the boundaries of large hypomethylated functional genomic regions, including super-enhancer, DNA methylation canyon and broad-H3K4me3 peaks. We speculate that ‘5hmC-rim’ might safeguard low levels of cytosine methylation at these regions. Our comprehensive analysis highlights the importance of dynamic changes of epigenetic landscapes in driving pancreatic differentiation of hESC.

Collaboration


Dive into the Ruiyu Xie's collaboration.

Top Co-Authors

Avatar

Maike Sander

University of California

View shared research outputs
Top Co-Authors

Avatar

Nisha A. Patel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allen Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Hung Ping Shih

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge