Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rujin Chen is active.

Publication


Featured researches published by Rujin Chen.


The Plant Cell | 2004

Variation in Expression and Protein Localization of the PIN Family of Auxin Efflux Facilitator Proteins in Flavonoid Mutants with Altered Auxin Transport in Arabidopsis thaliana

Wendy Ann Peer; Anindita Bandyopadhyay; Joshua J. Blakeslee; Srinivas N. Makam; Rujin Chen; Patrick Masson; Angus S. Murphy

Aglycone flavonols are thought to modulate auxin transport in Arabidopsis thaliana via an as yet undefined mechanism. Biochemical studies suggest that flavonoids interact with regulatory proteins rather than directly with the PIN auxin efflux facilitator proteins. Auxin transport is enhanced in the absence of flavonoids (transparent testa4 [tt4]) and reduced in the presence of excess flavonols (tt7 and tt3). Steady state PIN mRNA levels in roots inversely correlate with auxin movement in tt mutants. PIN gene transcription and protein localization in flavonoid-deficient mutants appear to be modulated by developmental cues and are auxin responsive. Modulation of PIN gene expression and protein distribution by localized auxin accumulations occurs in the wild type as well. Flavonoids inhibit auxin transport primarily at the shoot apex and root tip and appear to modulate vesicular cycling of PIN1 at the root tip. In some auxin-accumulating tissues, flavonoid increases and changes in flavonoid speciation are subsequent to auxin accumulation.


The Plant Cell | 2003

ALTERED RESPONSE TO GRAVITY Is a Peripheral Membrane Protein That Modulates Gravity-Induced Cytoplasmic Alkalinization and Lateral Auxin Transport in Plant Statocytes

John C. Sedbrook; Rujin Chen; Simon Gilroy; Patrick Masson

ARG1 (ALTERED RESPONSE TO GRAVITY) is required for normal root and hypocotyl gravitropism. Here, we show that targeting ARG1 to the gravity-perceiving cells of roots or hypocotyls is sufficient to rescue the gravitropic defects in the corresponding organs of arg1-2 null mutants. The cytosolic alkalinization of root cap columella cells that normally occurs very rapidly upon gravistimulation is lacking in arg1-2 mutants. Additionally, vertically grown arg1-2 roots appear to accumulate a greater amount of auxin in an expanded domain of the root cap compared with the wild type, and no detectable lateral auxin gradient develops across mutant root caps in response to gravistimulation. We also demonstrate that ARG1 is a peripheral membrane protein that may share some subcellular compartments in the vesicular trafficking pathway with PIN auxin efflux carriers. These data support our hypothesis that ARG1 is involved early in gravitropic signal transduction within the gravity-perceiving cells, where it influences pH changes and auxin distribution. We propose that ARG1 affects the localization and/or activity of PIN or other proteins involved in lateral auxin transport.


Plant Journal | 2011

Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula.

Jeremy D. Murray; RajaSekhara Reddy Duvvuru Muni; Ivone Torres-Jerez; Yuhong Tang; Stacy N. Allen; Megan Andriankaja; Guangming Li; Ashverya Laxmi; Xiaofei Cheng; Jiangqi Wen; David Vaughan; Michael Schultze; Jongho Sun; Myriam Charpentier; Giles E. D. Oldroyd; Million Tadege; Pascal Ratet; Kirankumar S. Mysore; Rujin Chen; Michael K. Udvardi

Intracellular invasion of root cells is required for the establishment of successful endosymbioses in legumes of both arbuscular mycorrhizal (AM) fungi and rhizobial bacteria. In both interactions a requirement for successful entry is the activation of a common signalling pathway that includes five genes required to generate calcium oscillations and two genes required for the perception of the calcium response. Recently, it has been discovered that in Medicago truncatula, the Vapyrin (VPY) gene is essential for the establishment of the arbuscular mycorrhizal symbiosis. Here, we show by analyses of mutants that the same gene is also required for rhizobial colonization and nodulation. VPY encodes a protein featuring a Major Sperm Protein domain, typically featured on proteins involved in membrane trafficking and biogenesis, and a series of ankyrin repeats. Plants mutated in this gene have abnormal rhizobial infection threads and fewer nodules, and in the case of interactions with AM fungi, epidermal penetration defects and aborted arbuscule formation. Calcium spiking in root hairs in response to supplied Nod factors is intact in the vpy-1 mutant. This, and the elevation of VPY transcripts upon application of Nod factors which we show to be dependent on NFP, DMI1, and DMI3, indicates that VPY acts downstream of the common signalling pathway.


Plant Physiology | 2008

Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula.

Hongliang Wang; Jianghua Chen; Jiangqi Wen; Million Tadege; Guangming Li; Yu Liu; Kirankumar S. Mysore; Pascal Ratet; Rujin Chen

Molecular genetic studies suggest that FLORICAULA (FLO)/LEAFY (LFY) orthologs function to control compound leaf development in some legume species. However, loss-of-function mutations in the FLO/LFY orthologs result in reduction of leaf complexity to different degrees in Pisum sativum and Lotus japonicus. To further understand the role of FLO/LFY orthologs in compound leaf development in legumes, we studied compound leaf developmental processes and characterized a leaf development mutant, single leaflet1 (sgl1), from the model legume Medicago truncatula. The sgl1 mutants exhibited strong defects in compound leaf development; all adult leaves in sgl1 mutants are simple due to failure in initiating lateral leaflet primordia. In addition, the sgl1 mutants are also defective in floral development, producing inflorescence-like structures. Molecular cloning of SGL1 revealed that it encodes the M. truncatula FLO/LFY ortholog. When properly expressed, LFY rescued both floral and compound leaf defects of sgl1 mutants, indicating that LFY can functionally substitute SGL1 in compound leaf and floral organ development in M. truncatula. We show that SGL1 and LFY differed in their promoter activities. Although the SGL1 genomic sequence completely rescued floral defects of lfy mutants, it failed to alter the simple leaf structure of the Arabidopsis thaliana plants. Collectively, our data strongly suggest that initiation of lateral leaflet primordia required for compound leaf development involves regulatory processes mediated by the SGL1 function in M. truncatula.


Plant Physiology | 2009

Deletion-Based Reverse Genetics in Medicago truncatula

Christian Rogers; Jiangqi Wen; Rujin Chen; Giles E. D. Oldroyd

The primary goal of reverse genetics, the identification of null mutations in targeted genes, is achieved through screening large populations of randomly mutagenized plants. T-DNA and transposon-based mutagenesis has been widely employed but is limited to species in which transformation and tissue culture are efficient. In other species, TILLING (for Targeting Induced Local Lesions IN Genomes), based on chemical mutagenesis, has provided an efficient method for the identification of single base pair mutations, only 5% of which will be null mutations. Furthermore, the efficiency of inducing point mutations, like insertion-based mutations, is dependent on target size. Here, we describe an alternative reverse genetic strategy based on physically induced genomic deletions that, independent of target size, exclusively recovers knockout mutants. Deletion TILLING (De-TILLING) employs fast neutron mutagenesis and a sensitive polymerase chain reaction-based detection. A population of 156,000 Medicago truncatula plants has been structured as 13 towers each representing 12,000 M2 plants. The De-TILLING strategy allows a single tower to be screened using just four polymerase chain reaction reactions. Dual screening and three-dimensional pooling allows efficient location of mutants from within the towers. With this method, we have demonstrated the detection of mutants from this population at a rate of 29% using five targets per gene. This De-TILLING reverse genetic strategy is independent of tissue culture and efficient plant transformation and therefore applicable to any plant species. De-TILLING mutants offer advantages for crop improvement as they possess relatively few background mutations and no exogenous DNA.


The Plant Cell | 2009

The E3 Ubiquitin Ligase SCFTIR1/AFB and Membrane Sterols Play Key Roles in Auxin Regulation of Endocytosis, Recycling, and Plasma Membrane Accumulation of the Auxin Efflux Transporter PIN2 in Arabidopsis thaliana

Jianwei Pan; Shozo Fujioka; Jianling Peng; Jianghua Chen; Guangming Li; Rujin Chen

The PIN family of auxin efflux transporters exhibit polar plasma membrane (PM) localization and play a key role in auxin gradient-mediated developmental processes. Auxin inhibits PIN2 endocytosis and promotes its PM localization. However, the underlying mechanisms remain elusive. Here, we show that the inhibitory effect of auxin on PIN2 endocytosis was impaired in SCFTIR1/AFB auxin signaling mutants. Similarly, reducing membrane sterols impaired auxin inhibition of PIN2 endocytosis. Gas chromatography–mass spectrometry analyses indicate that membrane sterols were significantly reduced in SCFTIR1/AFB mutants, supporting a link between membrane sterols and auxin signaling in regulating PIN2 endocytosis. We show that auxin promoted PIN2 recycling from endosomes to the PM and increased PIN2 steady state levels in the PM fraction. Furthermore, we show that the positive effect of auxin on PIN2 levels in the PM was impaired by inhibiting membrane sterols or auxin signaling. Consistent with this, the sterol biosynthetic mutant fk-J79 exhibited pronounced defects in primary root elongation and gravitropic response. Our data collectively indicate that, although there are distinct processes involved in endocytic regulation of specific PM-resident proteins, the SCFTIR1/AFB-dependent processes are required for auxin regulation of endocytosis, recycling, and PM accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana.


Trends in Plant Science | 1999

Root gravitropism: a complex response to a simple stimulus?

Elizabeth Rosen; Rujin Chen; Patrick Masson

Roots avoid depleting their immediate environment of essential nutrients by continuous growth. Root growth is directed by environmental cues, including gravity. Gravity sensing occurs mainly in the columella cells of the root cap. Upon reorientation within the gravity field, the root-cap amyloplasts sediment, generating a physiological signal that promotes the development of a curvature at the root elongation zones. Recent molecular genetic studies in Arabidopsis have allowed the identification of genes that play important roles in root gravitropism. Among them, the ARG1 gene encodes a DnaJ-like protein involved in gravity signal transduction, whereas the AUX1 and AGR1 genes encode proteins involved in polar auxin transport. These studies have important implications for understanding the intra- and inter-cellular signaling processes that underlie root gravitropism.


Plants (Basel, Switzerland) | 2015

Root Traits and Phenotyping Strategies for Plant Improvement

Ana Paez-Garcia; Christy M. Motes; Wolf-Rüdiger Scheible; Rujin Chen; Elison B. Blancaflor; Maria J. Monteros

Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.


The Plant Cell | 2012

Loss of Abaxial Leaf Epicuticular Wax in Medicago truncatula irg1/palm1 Mutants Results in Reduced Spore Differentiation of Anthracnose and Nonhost Rust Pathogens

Srinivasa Rao Uppalapati; Yasuhiro Ishiga; Vanthana Doraiswamy; Mohamed Bedair; Shipra Mittal; Jianghua Chen; Jin Nakashima; Yuhong Tang; Million Tadege; Pascal Ratet; Rujin Chen; Holger Schultheiss; Kirankumar S. Mysore

This study demonstrates that a loss-of-function mutation of a transcription factor involved in leaf morphogenesis impacts abaxial epicuticular wax loading, resulting in complete loss of wax crystals, which in turn affects fungal differentiation, suggesting a role for surface components of the leaf wax and hydrophobicity in differentiation of preinfection structures by rust pathogens. To identify genes that confer nonhost resistance to biotrophic fungal pathogens, we did a forward-genetics screen using Medicago truncatula Tnt1 retrotransposon insertion lines. From this screen, we identified an inhibitor of rust germ tube differentation1 (irg1) mutant that failed to promote preinfection structure differentiation of two rust pathogens, Phakopsora pachyrhizi and Puccinia emaculata, and one anthracnose pathogen, Colletotrichum trifolii, on the abaxial leaf surface. Cytological and chemical analyses revealed that the inhibition of rust preinfection structures in irg1 mutants is due to complete loss of the abaxial epicuticular wax crystals and reduced surface hydrophobicity. The composition of waxes on abaxial leaf surface of irg1 mutants had >90% reduction of C30 primary alcohols and a preferential increase of C29 and C31 alkanes compared with the wild type. IRG1 encodes a Cys(2)His(2) zinc finger transcription factor, PALM1, which also controls dissected leaf morphology in M. truncatula. Transcriptome analysis of irg1/palm1 mutants revealed downregulation of eceriferum4, an enzyme implicated in primary alcohol biosynthesis, and MYB96, a major transcription factor that regulates wax biosynthesis. Our results demonstrate that PALM1 plays a role in regulating epicuticular wax metabolism and transport and that epicuticular wax influences spore differentiation of host and nonhost fungal pathogens.


Plant Physiology | 2012

A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation

Catalina I. Pislariu; Jeremy D. Murray; Jiangqi Wen; Viviane Cosson; RajaSekhara Reddy Duvvuru Muni; Mingyi Wang; Vagner A. Benedito; Andry Andriankaja; Xiaofei Cheng; Ivone Torres Jerez; Samuel Mondy; Shulan Zhang; Mark Taylor; Million Tadege; Pascal Ratet; Kirankumar S. Mysore; Rujin Chen; Michael K. Udvardi

A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

Collaboration


Dive into the Rujin Chen's collaboration.

Top Co-Authors

Avatar

Patrick Masson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianghua Chen

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Pascal Ratet

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Rosen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changhui Guan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David Silver

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Elison B. Blancaflor

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Guihua Bai

Kansas State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge