Rukman Awang Hamat
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rukman Awang Hamat.
Journal of Clinical Microbiology | 2010
Ehsanollah Ghaznavi-Rad; Mariana Nor Shamsudin; Zamberi Sekawi; Liew Yun Khoon; Mohammad Nazri Aziz; Rukman Awang Hamat; Norlijah Othman; Pei Pei Chong; Alex van Belkum; Hamed Ghasemzadeh-Moghaddam; Vasanthakumari Neela
ABSTRACT We define the epidemiology of predominant and sporadic methicillin-resistant Staphylococcus aureus (MRSA) strains in a central teaching and referral hospital in Kuala Lumpur, Malaysia. This is done on the basis of spa sequencing, multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, and virulence gene profiling. During the period of study, the MRSA prevalence was 44.1%, and 389 MRSA strains were included. The prevalence of MRSA was found to be significantly higher in the patients of Indian ethnicity (P < 0.001). The majority (92.5%) of the isolates belonged to ST-239, spa type t037, and possessed the type III or IIIA SCCmec. The arginine catabolic mobile element (ACME) arcA gene was detected in three (1.05%) ST-239 isolates. We report the first identification of ACME arcA gene-positive ST-239. Apart from this predominant clone, six (1.5%) isolates of ST-22, with two related spa types (t032 and t4184) and a singleton (t3213), carrying type IVh SCCmec, were detected for the first time in Asia. A limited number of community-acquired (CA) MRSA strains were also detected. These included ST-188/t189 (2.1%), ST-1/t127 (2.3%), and ST-7/t091 (1%). Panton-Valentin leukocidin (PVL) was detected in all ST-1 and ST-188 strains and in 0.7% of the ST-239 isolates. The majority of the isolates carried agr I, except that ST-1 strains were agr III positive. Virulence genes seg and sei were seen only among ST-22 isolates. In conclusion, current results revealed the predominance of ST-239-SCCmec III/IIIA and the penetration of ST-22 with different virulence gene profiles. The emergence in Malaysia of novel clones of known epidemic and pathogenic potential should be taken seriously.
BioMed Research International | 2012
Salman Sahab Atshan; Mariana Nor Shamsudin; Zamberi Sekawi; Leslie Than Thian Lung; Rukman Awang Hamat; Arunkumar Karunanidhi; Alreshidi Mateg Ali; Ehsanollah Ghaznavi-Rad; Hamed Ghasemzadeh-Moghaddam; Johnson Shueh Chong Seng; Jayakayatri Jeevajothi Nathan; Chong Pei Pei
Clinical information about genotypically different clones of biofilm-producing Staphylococcus aureus is largely unknown. We examined whether different clones of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) differ with respect to staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) in biofilm formation. The study used 60 different types of spa and determined the phenotypes, the prevalence of the 13 MSCRAMM, and biofilm genes for each clone. The current investigation was carried out using a modified Congo red agar (MCRA), a microtiter plate assay (MPA), polymerase chain reaction (PCR), and reverse transcriptase polymerase chain reaction (RT-PCR). Clones belonging to the same spa type were found to have similar properties in adheringto the polystyrene microtiter plate surface. However, their ability to produce slime on MCRA medium was different. PCR experiments showed that 60 clones of MSSA and MRSA were positive for 5 genes (out of 9 MSCRAMM genes). icaADBC genes were found to be present in all the 60 clones tested indicating a high prevalence, and these genes were equally distributed among the clones associated with MSSA and those with MRSA. The prevalence of other MSCRAMM genes among MSSA and MRSA clones was found to be variable. MRSA and MSSA gene expression (MSCRAMM and icaADBC) was confirmed by RT-PCR.
Infection, Genetics and Evolution | 2013
Salman Sahab Atshan; Mariana Nor Shamsudin; Arunkumar Karunanidhi; Alex van Belkum; Leslie Than Thian Lung; Zamberi Sekawi; Jayakayatri Jeevajothi Nathan; King Hwa Ling; Johnson Shueh Chong Seng; Alreshidi Mateg Ali; Salwa A. Abduljaleel; Rukman Awang Hamat
Staphylococcus aureus biofilm associated infections remains a major clinical concern in patients with indwelling devices. Quantitative real-time PCR (qPCR) can be used to investigate the pathogenic role of such biofilms. We describe qPCRs for 12 adhesion and biofilm-related genes of four S. aureus isolates which were applied during in vitro biofilm development. An endogenous control (16S rRNA) was used for signal normalization. We compared the qPCR results with structural analysis using scanning electron microscopy (SEM). The SEM studies showed different cellular products surrounding the aggregated cells at different times of biofilm formation. Using qPCR, we found that expression levels of the gene encoding fibronectin binding protein A and B and clumping factor B (fnbA/B and clfB), which involves in primary adherence of S. aureus, were significantly increased at 24h and decreased slightly and variably at 48 h when all 4 isolates were considered. The elastin binding protein (ebps) RNA expression level was significantly enhanced more than 6-fold at 24 and 48 h compared to 12h. Similar results were obtained for the intercellular adhesion biofilm required genes type C (icaC). In addition, qPCR revealed a fluctuation in expression levels at different time points of biofilm growth of other genes, indicating that different parameter modes of growth processes are operating at different times.
International Journal of Medical Microbiology | 2011
Hamed Ghasemzadeh-Moghaddam; Ehsanollah Ghaznavi-Rad; Zamberi Sekawi; Liew Yun-Khoon; Mohammad Nazri Aziz; Rukman Awang Hamat; Damian C. Melles; Alex van Belkum; Mariana Nor Shamsudin; Vasanthakumari Neela
Despite the association of methicillin-susceptible S. aureus (MSSA) with several life-threatening diseases, relatively little is known about their clinical epidemiology in Malaysia. We characterized MSSA isolates (n=252) obtained from clinical and community (carriage) sources based on spa sequencing and multilocus sequence typing (MLST). The prevalence of several important virulence genes was determined to further define the molecular characteristics of MSSA clones circulating in Malaysia. Among the 142 clinical and 110 community-acquired MSSA isolates, 98 different spa types were identified, corresponding to 8 different spa clonal clusters (spa-CCs). In addition, MLST analysis revealed 22 sequence types (STs) with 5 singletons corresponding to 12 MLST-CCs. Interestingly, spa-CC084/085 (MLST-CC15) (p=0.038), spa-non-founder 2 (MLST-ST188) (p=0.002), and spa-CC127 (MLST-CC1) (p=0.049) were identified significantly more often among clinical isolates. spa-CC3204 (MLST-CC121) (p=0.02) and spa-CC015 (MLST-CC45) (p=0.0002) were more common among community isolates. Five dominant MLST-CCs (CC8, CC121, CC1, CC45, and CC5) having clear counterparts among the major MRSA clones were also identified in this study. While the MSSA strains are usually genetically heterogeneous, a relatively high frequency (19/7.5%) of ST188 (t189) strains was found, with 57.8% of these strains carrying the Panton-Valentine leukocidin (PVL). Analysis of additional virulence genes showed a frequency of 36.5% and 36.9% for seg and sei and 0.8% and 6.3% for etb and tst genes, respectively. Arginine catabolic mobile element (ACME) was detected in 4 community isolates only. These represent the first isolates harbouring this gene in an Asian region. In conclusion, MSSA from the Malaysian community and their clinical counterparts are genetically diverse, but certain clones occur more often among clinical isolates than among carriage isolates and vice versa.
BioMed Research International | 2013
Poh Leng Weng; Ramliza Ramli; Mariana Nor Shamsudin; Yoke Kqueen Cheah; Rukman Awang Hamat
Little is known on the genetic relatedness and potential dissemination of particular enterococcal clones in Malaysia. We studied the antibiotic susceptibility profiles of Enterococcus faecium and Enterococcus faecalis and subjected them to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). E. faecium and E. faecalis displayed 27 and 30 pulsotypes, respectively, and 10 representative E. faecium and E. faecalis isolates (five each) yielded few different sequence types (STs): ST17 (2 isolates), ST78, ST203, and ST601 for E. faecium, and ST6, ST16, ST28, ST179, and ST399 for E. faecalis. Resistance to tazobactam-piperacillin and ampicillin amongst E. faecium isolates was highly observed as compared to E. faecalis isolates. All of the isolates were sensitive to vancomycin and teicoplanin. The presence of epidemic and nosocomial strains of selected E. faecium STs: 17, 78, and 203 and E. faecalis ST6 as well as high rates of resistance to multiple antibiotics amongst E. faecium isolates is of a particular concern.
International Journal of Molecular Sciences | 2014
S. Suresh Kumar; Abdullah A. Alarfaj; Murugan A. Munusamy; A. Singh; I-Chia Peng; Sivan Padma Priya; Rukman Awang Hamat; Akon Higuchi
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
Clinical and Vaccine Immunology | 2015
Yun Khoon Liew; Rukman Awang Hamat; Alex van Belkum; Pei Pei Chong; Vasanthakumari Neela
ABSTRACT The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.
Journal of Hospital Infection | 2012
Mariana Nor Shamsudin; Mateg Ali Alreshidi; Rukman Awang Hamat; A.S. Alshrari; Salman Sahab Atshan; Vasantha Kumari Neela
The minimum inhibitory concentrations (MICs) of 60 meticillin-resistant Staphylococcus aureus (MRSA) isolates from Malaysia to three antiseptic agents - benzalkonium chloride (BZT), benzethonium chloride (BAC) and chlorhexidine digluconate (CHG) - were determined. All isolates had MICs ranging from 0.5 to 2 mg/L. Antiseptic resistance genes qacA/B and smr were detected in 83.3% and 1.6% of the isolates, respectively. Carriage of qacA/B correlated with reduced susceptibility to CHG and BAC. This is the first report of the prevalence of qacA/B and smr gene carriage in Malaysian MRSA isolates, with a high frequency of qacA/B carriage. The presence of these antiseptic resistance genes and associated reduced susceptibility to antiseptic agents may have clinical implications.
Frontiers in Microbiology | 2015
Salman Sahab Atshan; Mariana Nor Shamsudin; Zamberi Sekawi; Leslie Than Thian Lung; Fatemeh Barantalab; Yun K. Liew; Mateg Ali Alreshidi; Salwa A. Abduljaleel; Rukman Awang Hamat
Staphylococcus aureus is well known for its biofilm formation with rapid emergence of new clones circulating worldwide. The main objectives of the study were (1) to identify possible differences in protein expression among various and closely related clonal types of S. aureus, (2) to establish the differences in protein expression in terms of size of protein spots and its intensities between bacteria which are grown statically (biofilm formation) with that of under aeration and agitation, and (3) to compare the differences in protein expression as a function of time (in hours). In this study, we selected six clinical isolates comprising two similar (MRSA-527 and MRSA-524) and four different (MRSA-139, MSSA-12E, MSSA-22d, and MSSA-10E) types identified by spa typing, MLST and SCCmec typing. We performed 2D gel migration comparison. Also, two MRSA isolates (527 and 139) were selected to determine quantitative changes in the level of extracellular proteins at different biofilm growth time points of 12, 24, and 48 h. The study was done using a strategy that combines 2-DGE and LC-MS/MS analysis for absolute quantification and identification of the extracellular proteins. The 2DGE revealed that the proteomic profiles for the isolates belonging to the similar spa, MLST, and SCCmec types were still quite different. Among the extracellular proteins secreted at different time points of biofilm formation, significant changes in protein expression were observed at 48 h incubation as compared to the exponential growth at 12 h incubation. The main conclusion of the work is that the authors do observe differences among isolates, and growth conditions do influence the protein content at different time points of biofilm formation.
International Journal of Immunopathology and Pharmacology | 2014
Ehsan Ghafourian; Sobhan Ghafourian; Nourkhoda Sadeghifard; Reza Mohebi; Y. Shokoohini; S. Nezamoleslami; Rukman Awang Hamat
Vitiligo is an acquired cutaneous disorder of pigmentation, with an incidence of 0.5% to 2% worldwide. There are three major hypotheses for the pathogenesis of vitiligo that are not exclusive of each other: biochemical/cytotoxic, neural and autoimmune. Recent data provide strong evidence supporting an autoimmune pathogenesis of vitiligo. As vitiligo can have a major effect on quality of life, treatment can be considered and should preferably begin early when then disease is active. Current treatment modalities are directed towards stopping progression of the disease and achieving repigmentation. Therapies include corticosteroids, topical immunomodulators, photo(chemo)therapy, surgery, combination therapies and depigmentation of normally pigmented skin. It seems that traditional Chinese medicine could be more effective than the current treatment for vitligo.