Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruman Rahman is active.

Publication


Featured researches published by Ruman Rahman.


Molecular Cancer Research | 2009

Pediatric Ependymoma: Biological Perspectives

John-Paul Kilday; Ruman Rahman; Sara Dyer; Lee Ridley; James Lowe; Beth Coyle; Richard Grundy

Pediatric ependymomas are enigmatic tumors that continue to present a clinical management challenge despite advances in neurosurgery, neuroimaging techniques, and radiation therapy. Difficulty in predicting tumor behavior from clinical and histological factors has shifted the focus to the molecular and cellular biology of ependymoma in order to identify new correlates of disease outcome and novel therapeutic targets. This article reviews our current understanding of pediatric ependymoma biology and includes a meta-analysis of all comparative genomic hybridization (CGH) studies done on primary ependymomas to date, examining more than 300 tumors. From this meta-analysis and a review of the literature, we show that ependymomas in children exhibit a different genomic profile to those in adults and reinforce the evidence that ependymomas from different locations within the central nervous system (CNS) are distinguishable at a genomic level. Potential biological markers of prognosis in pediatric ependymoma are assessed and the ependymoma cancer stem cell hypothesis is highlighted with respect to tumor resistance and recurrence. We also discuss the shifting paradigm for treatment modalities in ependymoma that target molecular alterations in tumor-initiating cell populations. (Mol Cancer Res 2009;7(6):765–86)


Neuro-oncology | 2008

Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma.

Lee Ridley; Ruman Rahman; Marie-Anne Brundler; David W. Ellison; James Lowe; Keith Robson; Emma Prebble; Inga Luckett; Richard J. Gilbertson; S.E. Parkes; Vikki Rand; Beth Coyle; Richard Grundy

Pediatric ependymomas are enigmatic tumors, and their clinical management remains one of the more difficult in pediatric oncology. The identification of biological correlates of outcome and therapeutic targets remains a significant challenge in this disease. We therefore analyzed a panel of potential biological markers to determine optimal prognostic markers. We constructed a tissue microarray from 97 intracranial tumors from 74 patients (WHO grade II-III) and analyzed the candidate markers nucleolin, telomerase catalytic subunit (hTERT; antibody clone 44F12), survivin, Ki-67, and members of the receptor tyrosine kinase I (RTK-I) family by immunohistochemistry. Telomerase activity was determined using the in vitro-based telomere repeat amplification protocol assay, and telomere length was measured using the telomere restriction fragment assay. Primary tumors with low versus high nucleolin protein expression had a 5-year event-free survival of 74%+/-13% and 31%+/-7%, respectively. Multivariate analysis identified low nucleolin expression to be independently associated with a more favorable prognosis (hazard ratio=6.25; 95% confidence interval, 1.6-24.2; p=0.008). Ki-67 and survivin correlated with histological grade but not with outcome. Immunohistochemical detection of the RTK-I family did not correlate with grade or outcome. Telomerase activity was evident in 19 of 22 primary tumors, with telomere lengthening and/or maintenance occurring in five of seven recurrent cases. Low nucleolin expression was the single most important biological predictor of outcome in pediatric intracranial ependymoma. Furthermore, telomerase reactivation and maintenance of telomeric repeats appear necessary for childhood ependymoma progression. These findings require corroboration in a clinical trial setting.


Journal of Oncology | 2010

Antiangiogenic Therapy and Mechanisms of Tumor Resistance in Malignant Glioma

Ruman Rahman; Stuart Smith; Cheryl V. Rahman; Richard Grundy

Despite advances in surgery, radiation therapy, and chemotherapeutics, patients with malignant glioma have a dismal prognosis. The formations of aberrant tumour vasculature and glioma cell invasion are major obstacles for effective treatment. Angiogenesis is a key event in the progression of malignant gliomas, a process involving endothelial cell proliferation, migration, reorganization of extracellular matrix and tube formation. Such processes are regulated by the homeostatic balance between proangiogenic and antiangiogenic factors, most notably vascular endothelial growth factors (VEGFs) produced by glioma cells. Current strategies targeting VEGF-VEGF receptor signal transduction pathways, though effective in normalizing abnormal tumor vasculature, eventually result in tumor resistance whereby a highly infiltrative and invasive phenotype may be adopted. Here we review recent anti-angiogenic therapy for malignant glioma and highlight implantable devices and nano/microparticles as next-generation methods for chemotherapeutic delivery. Intrinsic and adaptive modes of glioma resistance to anti-angiogenic therapy will be discussed with particular focus on the glioma stem cell paradigm.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms.

Thomas Tan; Ruman Rahman; Farah Jaber-Hijazi; Daniel A. Felix; Chen Chen; Edward J. Louis; A. Aziz Aboobaker

In most sexually reproducing animals, replication and maintenance of telomeres occurs in the germ line and during early development in embryogenesis through the use of telomerase. Somatic cells generally do not maintain telomere sequences, and these cells become senescent in adults as telomeres shorten to a critical length. Some animals reproduce clonally and must therefore require adult somatic mechanisms for maintaining their chromosome ends. Here we study the telomere biology of planarian flatworms with apparently limitless regenerative capacity fueled by a population of highly proliferative adult stem cells. We show that somatic telomere maintenance is different in asexual and sexual animals. Asexual animals maintain telomere length somatically during reproduction by fission or when regeneration is induced by amputation, whereas sexual animals only achieve telomere elongation through sexual reproduction. We demonstrate that this difference is reflected in the expression and alternate splicing of the protein subunit of the telomerase enzyme. Asexual adult planarian stem cells appear to maintain telomere length over evolutionary timescales without passage through a germ-line stage. The adaptations we observe demonstrate indefinite somatic telomerase activity in proliferating stem cells during regeneration or reproduction by fission, and establish planarians as a pertinent model for studying telomere structure, function, and maintenance.


Neuro-oncology | 2011

Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion

Deema Hussein; Wiyada Punjaruk; Lisa Storer; Lucy Shaw; Ramadhan T. Othman; Andrew C. Peet; Suzanne Miller; Gagori Bandopadhyay; Rachel Heath; Rajendra Kumari; Karen J. Bowman; Paul Braker; Ruman Rahman; George D. D. Jones; Susan A. Watson; James Lowe; Ian D. Kerr; Richard Grundy; Beth Coyle

Reliable model systems are needed to elucidate the role cancer stem cells (CSCs) play in pediatric brain tumor drug resistance. The majority of studies to date have focused on clinically distinct adult tumors and restricted tumor types. Here, the CSC component of 7 newly established primary pediatric cell lines (2 ependymomas, 2 medulloblastomas, 2 gliomas, and a CNS primitive neuroectodermal tumor) was thoroughly characterized. Comparison of DNA copy number with the original corresponding tumor demonstrated that genomic changes present in the original tumor, typical of that particular tumor type, were retained in culture. In each case, the CSC component was approximately 3–4-fold enriched in neurosphere culture compared with monolayer culture, and a higher capacity for multilineage differentiation was observed for neurosphere-derived cells. DNA content profiles of neurosphere-derived cells expressing the CSC marker nestin demonstrated the presence of cells in all phases of the cell cycle, indicating that not all CSCs are quiescent. Furthermore, neurosphere-derived cells demonstrated an increased resistance to etoposide compared with monolayer-derived cells, having lower initial DNA damage, potentially due to a combination of increased drug extrusion by ATP-binding cassette multidrug transporters and enhanced rates of DNA repair. Finally, orthotopic xenograft models reflecting the tumor of origin were established from these cell lines. In summary, these cell lines and the approach taken provide a robust model system that can be used to develop our understanding of the biology of CSCs in pediatric brain tumors and other cancer types and to preclinically test therapeutic agents.


Molecular Cancer Therapeutics | 2010

Histone Deacetylase Inhibition Attenuates Cell Growth with Associated Telomerase Inhibition in High-Grade Childhood Brain Tumor Cells

Ruman Rahman; Robert A. Hirst; Jane Levesley; John-Paul Kilday; Siobhan Quinn; Andrew C. Peet; Christopher O'Callaghan; Beth Coyle; Richard Grundy

Aberrant epigenetic regulation of gene expression contributes to tumor initiation and progression. Studies from a plethora of hematologic and solid tumors support the use of histone deacetylase inhibitors (HDACi) as potent anticancer agents. However, the mechanism of HDACi action with respect to the temporal order of induced cellular events is unclear. The present study investigates the anticancer effects of the HDACi trichostatin A in high-grade childhood brain tumor cells. Acute exposure to trichostatin A resulted in marked inhibition of cell proliferation, an increase in the proportion of G2-M cells, activation of H2A.X, and subsequent induction of apoptosis in the majority of cell lines. These phenotypic effects were associated with abrogation of telomerase activity and human telomerase reverse transcriptase downregulation in the majority of cell lines. In contrast, no cytotoxicity was observed in primary ependymal cells with respect to cilia function. Thus, inhibition of histone deacetylases leads to antiproliferative and proapoptotic effects in childhood brain tumor cells, likely to involve altered chromatin regulation at the human telomerase reverse transcriptase promoter. Mol Cancer Ther; 9(9); 2568–81. ©2010 AACR.


PLOS ONE | 2012

Recapitulation of Tumor Heterogeneity and Molecular Signatures in a 3D Brain Cancer Model with Decreased Sensitivity to Histone Deacetylase Inhibition

Stuart Smith; Martin Wilson; Jennifer Ward; Cheryl V. Rahman; Andrew C. Peet; Donald Macarthur; Felicity R.A.J. Rose; Richard Grundy; Ruman Rahman

Introduction Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS). Methods CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. Results Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. Conclusions Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.


PLOS ONE | 2013

Adjuvant chemotherapy for brain tumors delivered via a novel intra-cavity moldable polymer matrix.

Cheryl V. Rahman; Stuart Smith; Paul S. Morgan; Keith A. Langmack; Phil Clarke; Alison Ritchie; Donald Macarthur; Felicity R.A.J. Rose; Kevin M. Shakesheff; Richard Grundy; Ruman Rahman

Introduction Polymer-based delivery systems offer innovative intra-cavity administration of drugs, with the potential to better target micro-deposits of cancer cells in brain parenchyma beyond the resected cavity. Here we evaluate clinical utility, toxicity and sustained drug release capability of a novel formulation of poly(lactic-co-glycolic acid) (PLGA)/poly(ethylene glycol) (PEG) microparticles. Methods PLGA/PEG microparticle-based matrices were molded around an ex vivo brain pseudo-resection cavity and analyzed using magnetic resonance imaging and computerized tomography. In vitro toxicity of the polymer was assessed using tumor and endothelial cells and drug release from trichostatin A-, etoposide- and methotrexate-loaded matrices was determined. To verify activity of released agents, tumor cells were seeded onto drug-loaded matrices and viability assessed. Results PLGA/PEG matrices can be molded around a pseudo-resection cavity wall with no polymer-related artifact on clinical scans. The polymer withstands fractionated radiotherapy, with no disruption of microparticle structure. No toxicity was evident when tumor or endothelial cells were grown on control matrices in vitro. Trichostatin A, etoposide and methotrexate were released from the matrices over a 3-4 week period in vitro and etoposide released over 3 days in vivo, with released agents retaining cytotoxic capabilities. PLGA/PEG microparticle-based matrices molded around a resection cavity wall are distinguishable in clinical scanning modalities. Matrices are non-toxic in vitro suggesting good biocompatibility in vivo. Active trichostatin A, etoposide and methotrexate can be incorporated and released gradually from matrices, with radiotherapy unlikely to interfere with release. Conclusion The PLGA/PEG delivery system offers an innovative intra-cavity approach to administer chemotherapeutics for improved local control of malignant brain tumors.


International Journal of Cancer | 2011

Histone deacetylase inhibition as an anticancer telomerase-targeting strategy.

Ruman Rahman; Richard Grundy

Aberrant epigenetic regulation of gene expression contributes to tumor initiation and progression. Studies from a plethora of hematologic and solid tumors support the use of histone deacetylase inhibitors (HDACi) as potent anticancer agents. The mechanism(s) of HDACi‐induced cancer growth inhibition and cell death are complex and incompletely elucidated. Here, we discuss erroneous epigenetic regulation of hTERT transcription in cancer cells and propose that alleviation of an improper acetylation–deacetylation balance at the hTERT promoter, is one mode by which HDACi induces anticancer effects. We conclude with some pertinent questions and future perspectives arising from the recent impetus in HDACi preclinical and early clinical studies, with particular attention to the cancer stem cell therapeutic paradigm and its relevance to tumor resistance.


Biochimica et Biophysica Acta | 2009

Cellular immortality in brain tumours: an integration of the cancer stem cell paradigm.

Ruman Rahman; Rachel Heath; Richard Grundy

Brain tumours are a diverse group of neoplasms that continue to present a formidable challenge in our attempt to achieve curable intervention. Our conceptual framework of human brain cancer has been redrawn in the current decade. There is a gathering acceptance that brain tumour formation is a phenotypic outcome of dysregulated neurogenesis, with tumours viewed as abnormally differentiated neural tissue. In relation, there is accumulating evidence that brain tumours, similar to leukaemia and many solid tumours, are organized as a developmental hierarchy which is maintained by a small fraction of cells endowed with many shared properties of tissue stem cells. Proof that neurogenesis persists throughout adult life, compliments this concept. Although the cancer cell of origin is unclear, the proliferative zones that harbour stem cells in the embryonic, post-natal and adult brain are attractive candidates within which tumour-initiation may ensue. Dysregulated, unlimited proliferation and an ability to bypass senescence are acquired capabilities of cancerous cells. These abilities in part require the establishment of a telomere maintenance mechanism for counteracting the shortening of chromosomal termini. A strategy based upon the synthesis of telomeric repeat sequences by the ribonucleoprotein telomerase, is prevalent in approximately 90% of human tumours studied, including the majority of brain tumours. This review will provide a developmental perspective with respect to normal (neurogenesis) and aberrant (tumourigenesis) cellular turnover, differentiation and function. Within this context our current knowledge of brain tumour telomere/telomerase biology will be discussed with respect to both its developmental and therapeutic relevance to the hierarchical model of brain tumourigenesis presented by the cancer stem cell paradigm.

Collaboration


Dive into the Ruman Rahman's collaboration.

Top Co-Authors

Avatar

Richard Grundy

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Stuart Smith

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Ward

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Toby Gould

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Wood

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Ritchie

Western General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge