Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rumyana Karlova is active.

Publication


Featured researches published by Rumyana Karlova.


The Plant Cell | 2006

The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1.

Rumyana Karlova; Eugenia Russinova; José Aker; Jacques Vervoort; Sacco C. de Vries

Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) is a leucine-rich repeat receptor-like kinase (LRR-RLK) involved in the acquisition of embryogenic competence and in male sporogenesis. To determine the composition of the SERK1 signaling complex in vivo, we generated plants expressing the SERK1 protein fused to cyan fluorescent protein under SERK1 promoter control. The membrane receptor complex was immunoprecipitated from seedlings, and the coimmunoprecipitating proteins were identified using liquid chromatography/matrix-assisted laser desorption ionization–time of flight/mass spectrometry of the trypsin-released peptides. This approach identified two other LRR-RLKs, the BRASSINOSTEROID-INSENSITIVE1 (BRI1) receptor and its coreceptor, the SERK3 or BRI1-ASSOCIATED KINASE1 protein. In addition, KINASE-ASSOCIATED PROTEIN PHOSPHATASE, CDC48A, and 14-3-3ν were found. Finally, the MADS box transcription factor AGAMOUS-LIKE15 and an uncharacterized zinc finger protein, a member of the CONSTANS family, were identified as part of the SERK1 complex. Using blue native gel electrophoresis, we show that SERK1 and SERK3 are part of BRI1-containing multiple protein complexes with relative masses between 300 and 500 kD. The SERK1 mutant allele serk1-1 enhances the phenotype of the weak BRI1 allele bri1-119. Collectively, these results suggest that apart from SERK3, SERK1 is also involved in the brassinolide signaling pathway.


The Plant Cell | 2011

Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening

Rumyana Karlova; F.M.A. Rosin; Jacqueline Busscher-Lange; V.A. Parapunova; Phuc Thi Do; Alisdair R. Fernie; Paul D. Fraser; Charles Baxter; Gerco C. Angenent; R.A. de Maagd

This study demonstrates that the tomato APETALA2a (AP2a) transcription factor modulates fruit ripening by negatively regulating ethylene biosynthesis and signaling. Various ripening regulators are shown to act upstream of AP2a. Gene expression analysis reveals that AP2a is involved in chloroplast to chromoplast transition. Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involvement of ethylene in tomato fruit ripening is still lacking. Here, we show that the tomato APETALA2a (AP2a) transcription factor regulates fruit ripening via regulation of ethylene biosynthesis and signaling. RNA interference (RNAi)-mediated repression of AP2a resulted in alterations in fruit shape, orange ripe fruits, and altered carotenoid accumulation. Microarray expression analyses of the ripe AP2 RNAi fruits showed altered expression of genes involved in various metabolic pathways, such as the phenylpropanoid and carotenoid pathways, as well as in hormone synthesis and perception. Genes involved in chromoplast differentiation and other ripening-associated processes were also differentially expressed, but softening and ethylene biosynthesis occurred in the transgenic plants. Ripening regulators RIPENING-INHIBITOR, NON-RIPENING, and COLORLESS NON-RIPENING (CNR) function upstream of AP2a and positively regulate its expression. In the pericarp of AP2 RNAi fruits, mRNA levels of CNR were elevated, indicating that AP2a and CNR are part of a negative feedback loop in the regulation of ripening. Moreover, we demonstrated that CNR binds to the promoter of AP2a in vitro.


Journal of Experimental Botany | 2013

Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis

Rumyana Karlova; Jan C. van Haarst; Chris Maliepaard; Henri van de Geest; Arnaud G. Bovy; Michiel Lammers; Gerco C. Angenent; Ruud A. de Maagd

MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally proven miRNA targets are known, and the role of miRNA action in these processes remains largely unknown. Here, by using parallel analysis of RNA ends (PARE) for global identification of miRNA targets and comparing four different stages of tomato fruit development, a total of 119 target genes of miRNAs were identified. Of these, 106 appeared to be new targets. A large part of the identified targets (56) coded for transcription factors. Auxin response factors, as well as two known ripening regulators, COLORLESS NON-RIPENING (CNR) and APETALA2a (SlAP2a), with developmentally regulated degradation patterns were identified. The levels of the intact messenger of both CNR and AP2a are actively modulated during ripening, by miR156/157 and miR172, respectively. Additionally, two TAS3-mRNA loci were identified as targets of miR390. Other targets such as ARGONAUTE 1 (AGO1), shown to be involved in miRNA biogenesis in other plant species, were identified, which suggests a feedback loop regulation of this process. In this study, it is shown that miRNA-guided cleavage of mRNAs is likely to play an important role in tomato fruit development and ripening.


The Plant Cell | 2012

The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening

Marian Bemer; Rumyana Karlova; Ana Rosa Ballester; Yury Tikunov; Arnaud G. Bovy; Mieke Wolters-Arts; Priscilla de Barros Rossetto; Gerco C. Angenent; Ruud A. de Maagd

Ripening of the tomato fruit is accompanied by an increase in ethylene production and involves color changes, altered sugar metabolism, tissue softening, and the synthesis of aroma volatiles. This study shows that the MADS domain transcription factors FUL1 and FUL2 play a role in the regulation of these ripening processes, but in an ethylene-independent manner. Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter.


Journal of Experimental Botany | 2014

Transcriptional control of fleshy fruit development and ripening

Rumyana Karlova; Natalie H. Chapman; Karine David; Gerco C. Angenent; Graham B. Seymour; Ruud A. de Maagd

Fleshy fruits have evolved to be attractive to frugivores in order to enhance seed dispersal, and have become an indispensable part of the human diet. Here we review the recent advances in the understanding of transcriptional regulation of fleshy fruit development and ripening with a focus on tomato. While aspects of fruit development are probably conserved throughout the angiosperms, including the model plant Arabidopsis thaliana, it is shown that the likely orthologues of Arabidopsis genes have distinct functions in fleshy fruits. The model for the study of fleshy fruit development is tomato, because of the availability of single gene mutants and transgenic knock-down lines. In other species, our knowledge is often incomplete or absent. Tomato fruit size and shape are co-determined by transcription factors acting during formation of the ovary. Other transcription factors play a role in fruit chloroplast formation, and upon ripening impact quality aspects such as secondary metabolite content. In tomato, the transcription factors NON-RIPENING (NOR), COLORLESS NON-RIPENING (CNR), and RIPENING INHIBITOR (MADS-RIN) in concert with ethylene signalling regulate ripening, possibly in response to a developmental switch. Additional components include TOMATO AGAMOUS-LIKE1 (TAGL1), APETALA2a (AP2a), and FRUITFULL (FUL1 and FUL2). The links between this highly connected regulatory network and downstream effectors modulating colour, texture, and flavour are still relatively poorly understood. Intertwined with this network is post-transcriptional regulation by fruit-expressed microRNAs targeting several of these transcription factors. This important developmental process is also governed by changes in DNA methylation levels and possibly chromatin remodelling.


Proteomics | 2009

Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases.

Rumyana Karlova; Walter Van Dongen; Mark Kwaaitaal; José Aker; Jacques Vervoort; Sacco C. de Vries

The Arabidopsis thaliana somatic embryogenesis receptor‐like kinase (SERK) family consists of five leucine‐rich repeat receptor‐like kinases (LRR‐RLKs) with diverse functions such as brassinosteroid insensitive 1 (BRI1)‐mediated brassinosteroid perception, development and innate immunity. The autophosphorylation activity of the kinase domains of the five SERK proteins was compared and the phosphorylated residues were identified by LC‐MS/MS. Differences in autophosphorylation that ranged from high activity of SERK1, intermediate activities for SERK2 and SERK3 to low activity for SERK5 were noted. In the SERK1 kinase the C‐terminally located residue Ser‐562 controls full autophosphorylation activity. Activation loop phosphorylation, including that of residue Thr‐462 previously shown to be required for SERK1 kinase activity, was not affected. In vivo SERK1 phosphorylation was induced by brassinosteroids. Immunoprecipitation of CFP‐tagged SERK1 from plant extracts followed by MS/MS identified Ser‐303, Thr‐337, Thr‐459, Thr‐462, Thr‐463, Thr‐468, and Ser‐612 or Thr‐613 or Tyr‐614 as in vivo phosphorylation sites of SERK1. Transphosphorylation of SERK1 by the kinase domain of the main brassinosteroid receptor BRI1 occurred only on Ser‐299 and Thr‐462. This suggests both intra‐ and intermolecular control of SERK1 kinase activity. Conversely, BRI1 was transphosphorylated by the kinase domain of SERK1 on Ser‐887. BRI1 kinase activity was not required for interaction with the SERK1 receptor in a pull down assay.


Plant Physiology | 2007

In Vivo Hexamerization and Characterization of the Arabidopsis AAA ATPase CDC48A Complex Using Förster Resonance Energy Transfer-Fluorescence Lifetime Imaging Microscopy and Fluorescence Correlation Spectroscopy

José Aker; Renske Hesselink; Ruchira Engel; Rumyana Karlova; Jan Willem Borst; Antonie J. W. G. Visser; Sacco C. de Vries

The Arabidopsis (Arabidopsis thaliana) AAA ATPase CDC48A was fused to cerulean fluorescent protein and yellow fluorescent protein. AAA ATPases like CDC48 are only active in hexameric form. Förster resonance energy transfer-based fluorescence lifetime imaging microscopy using CDC48A-cerulean fluorescent protein and CDC48A-yellow fluorescent protein showed interaction between two adjacent protomers, demonstrating homo-oligomerization occurs in living plant cells. Interaction between CDC48A and the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) transmembrane receptor occurs in very restricted domains at the plasma membrane. In these domains the predominant form of the fluorescently tagged CDC48A protein is a hexamer, suggesting that SERK1 is associated with the active form of CDC48A in vivo. SERK1 trans-phosphorylates CDC48A on Ser-41. Förster resonance energy transfer-fluorescence lifetime imaging microscopy was used to show that in vivo the C-terminal domains of CDC48A stay in close proximity. Employing fluorescence correlation spectroscopy, it was shown that CDC48A hexamers are part of larger complexes.


BMC Plant Biology | 2014

Identification, cloning and characterization of the tomato TCP transcription factor family

Violeta Parapunova; Marco Busscher; Jacqueline Busscher-Lange; Michiel Lammers; Rumyana Karlova; Arnaud G. Bovy; Gerco C. Angenent; Ruud A. de Maagd

BackgroundTCP proteins are plant-specific transcription factors, which are known to have a wide range of functions in different plant species such as in leaf development, flower symmetry, shoot branching, and senescence. Only a small number of TCP genes has been characterised from tomato (Solanum lycopersicum). Here we report several functional features of the members of the entire family present in the tomato genome.ResultsWe have identified 30 Solanum lycopersicum SlTCP genes, most of which have not been described before. Phylogenetic analysis clearly distinguishes two homology classes of the SlTCP transcription factor family - class I and class II. Class II differentiates in two subclasses, the CIN-TCP subclass and the CYC/TB1 subclass, involved in leaf development and axillary shoots formation, respectively. The expression patterns of all members were determined by quantitative PCR. Several SlTCP genes, like SlTCP12, SlTCP15 and SlTCP18 are preferentially expressed in the tomato fruit, suggesting a role during fruit development or ripening. These genes are regulated by RIN (RIPENING INHIBITOR), CNR (COLORLESS NON-RIPENING) and SlAP2a (APETALA2a) proteins, which are transcription factors with key roles in ripening. With a yeast one-hybrid assay we demonstrated that RIN binds the promoter fragments of SlTCP12, SlTCP15 and SlTCP18, and that CNR binds the SlTCP18 promoter. This data strongly suggests that these class I SlTCP proteins are involved in ripening. Furthermore, we demonstrate that SlTCPs bind the promoter fragments of members of their own family, indicating that they regulate each other. Additional yeast one-hybrid studies performed with Arabidopsis transcription factors revealed binding of the promoter fragments by proteins involved in the ethylene signal transduction pathway, contributing to the idea that these SlTCP genes are involved in the ripening process. Yeast two-hybrid data shows that SlTCP proteins can form homo and heterodimers, suggesting that they act together in order to form functional protein complexes and together regulate developmental processes in tomato.ConclusionsThe comprehensive analysis we performed, like phylogenetic analysis, expression studies, identification of the upstream regulators and the dimerization specificity of the tomato TCP transcription factor family provides the basis for functional studies to reveal the role of this family in tomato development.


Plant Physiology | 2007

In vivo Hexamerization and Characterization of the Arabidopsis AAA ATPase CDC48A-complex using FRET-FLIM and FCS

José Aker; Renske Hesselink; Ruchira Engel; Rumyana Karlova; Jan Willem Borst; Antonie J. W. G. Visser; Sacco C. de Vries

The Arabidopsis (Arabidopsis thaliana) AAA ATPase CDC48A was fused to cerulean fluorescent protein and yellow fluorescent protein. AAA ATPases like CDC48 are only active in hexameric form. Förster resonance energy transfer-based fluorescence lifetime imaging microscopy using CDC48A-cerulean fluorescent protein and CDC48A-yellow fluorescent protein showed interaction between two adjacent protomers, demonstrating homo-oligomerization occurs in living plant cells. Interaction between CDC48A and the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) transmembrane receptor occurs in very restricted domains at the plasma membrane. In these domains the predominant form of the fluorescently tagged CDC48A protein is a hexamer, suggesting that SERK1 is associated with the active form of CDC48A in vivo. SERK1 trans-phosphorylates CDC48A on Ser-41. Förster resonance energy transfer-fluorescence lifetime imaging microscopy was used to show that in vivo the C-terminal domains of CDC48A stay in close proximity. Employing fluorescence correlation spectroscopy, it was shown that CDC48A hexamers are part of larger complexes.


Proteomics | 2011

Proteomics insights into plant signaling and development

Kerstin Kaufmann; Cezary Smaczniak; Sacco C. de Vries; Gerco C. Angenent; Rumyana Karlova

Mass spectrometry‐based proteomics is used to gain insight into the abundance and subcellular localization of cellular signaling components, the composition of molecular complexes and the regulation of signaling pathways. Multicellular organisms have evolved signaling networks and fast responses to stimuli that can be discovered and monitored by the use of advanced proteomics techniques in combination with traditional functional analysis. Plants are multicellular organisms and products of tightly regulated developmental programmes that respond to environmental conditions and internal cues. Plant development is orchestrated by inter‐ and intracellular signaling molecules, receptors and transcriptional regulators, which act in a temporal and spatially coordinated manner. Here we review recent advances in proteomics applications used to understand complex cellular signaling processes in plants.

Collaboration


Dive into the Rumyana Karlova's collaboration.

Top Co-Authors

Avatar

José Aker

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Sacco C. de Vries

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Gerco C. Angenent

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ruud A. de Maagd

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jan Willem Borst

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Arnaud G. Bovy

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy Albrecht

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Marian Bemer

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge