Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rune Knudsen is active.

Publication


Featured researches published by Rune Knudsen.


Molecular Ecology | 2006

Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times

Kjartan Østbye; Per-Arne Amundsen; Louis Bernatchez; Anders Klemetsen; Rune Knudsen; Roar Kristoffersen; Tor F. Næsje; K. Hindar

The extensive phenotypic polymorphism in the European whitefish has triggered evolutionary research in order to disentangle mechanisms underlying diversification. To illuminate the ecological distinctiveness in polymorphic whitefish, and evaluate taxonomic designations, we studied nine Norwegian lakes in three watercourses, which each harboured pairs of divergent whitefish morphs. We compared the morphology and life history of these morphs, documented the extent of genetic differentiation between them, and contrasted the niche use of sympatric morphs along both the habitat and resource axes. In all cases, sympatric morphs differed in the number of gill rakers, a highly heritable trait related to trophic utilization. Individual growth rate, age and size at maturity, diet and habitat use also differed between morphs within lakes, but were remarkably similar across lakes within the same morph. Microsatellite analyses confirmed for all but one pair that sympatric morphs were significantly genetically different, and that similar morphs from different lakes likely have a polyphyletic origin. These results are most compatible with the process of parallel evolution through recurrent postglacial divergence into pelagic and benthic niches in each of these lakes. We propose that sparsely and densely rakered whitefish sympatric pairs may be a likely case of ecological speciation, mediated in oligotrophic lakes with few trophic competitors.


Science | 2007

Culling prey promotes predator recovery - Alternative states in a whole-lake experiment

Lennart Persson; Per-Arne Amundsen; André M. de Roos; Anders Klemetsen; Rune Knudsen; Raul Primicerio

Many top-predator fish stocks in both freshwater and marine systems have collapsed as a result of overharvesting. Consequently, some of these communities have shifted into seemingly irreversible new states. We showed, for predators feeding on prey that exhibit food-dependent growth, that culling of fish prey may promote predator recovery. We removed old stunted individuals of a prey-fish species in a large, low-productive lake, which caused an increase in the availability of small-sized prey and allowed the predator to recover. The shift in community state has been sustained for more than 15 years after the cull ended and represents an experimental demonstration of an alternative stable state in a large-scale field system. Because most animals exhibit food-dependent growth, shifts into alternative stable states resulting from overcompensating prey growth may be common in nature and may require counterintuitive management strategies.


Journal of Animal Ecology | 2009

Food web topology and parasites in the pelagic zone of a subarctic lake.

Per-Arne Amundsen; Kevin D. Lafferty; Rune Knudsen; Raul Primicerio; Anders Klemetsen; Armand M. Kuris

1. Parasites permeate trophic webs with their often complex life cycles, but few studies have included parasitism in food web analyses. Here we provide a highly resolved food web from the pelagic zone of a subarctic lake and explore how the incorporation of parasites alters the topology of the web. 2. Parasites used hosts at all trophic levels and increased both food-chain lengths and the total number of trophic levels. Their inclusion in the network analyses more than doubled the number of links and resulted in an increase in important food-web characteristics such as linkage density and connectance. 3. More than half of the parasite taxa were trophically transmitted, exploiting hosts at multiple trophic levels and thus increasing the degree of omnivory in the trophic web. 4. For trophically transmitted parasites, the number of parasite-host links exhibited a positive correlation with the linkage density of the host species, whereas no such relationship was seen for nontrophically transmitted parasites. Our findings suggest that the linkage density of free-living species affects their exposure to trophically transmitted parasites, which may be more likely to adopt highly connected species as hosts during the evolution of complex life cycles. 5. The study supports a prominent role for parasites in ecological networks and demonstrates that their incorporation may substantially alter considerations of food-web structure and functioning.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake

Rune Knudsen; Anders Klemetsen; Per-Arne Amundsen; Bjørn Hermansen

Two reproductive isolated morphs of Arctic charr (Salvelinus alpinus), termed profundal and littoral charr according to their different spawning habitats, co-occur in the postglacial lake Fjellfrøsvatn in North Norway. All profundal charr live in deep water their entire life and have a maximum size of 14 cm, while the littoral charr grow to 40 cm. Some small and young littoral charr move to the profundal zone in an ontogenetic habitat shift in the ice-free season and the rest of the population remains in epilimnic waters. The two morphs had different diet niches in the profundal zone: the profundal charr ate typical soft-bottom prey (chironomid larvae, pea mussels and benthic copepods), while the young littoral charr mainly consumed crustacean zooplankton. In four other lakes without a profundal morph (i.e. monomorphic populations), young charr also performed ontogenetic habitat shifts to the profundal zone and fed on zooplankton. The profundal morph of Fjellfrøsvatn therefore utilize a food resource niche that neither the littoral morph nor comparable monomorphic populations exploit. This suggests that intraspecific resource competition has driven incipient ecological speciation of the profundal charr of Fjellfrøsvatn. The exploitation of the soft-bottom resources by the profundal charr supports earlier experimental findings that the profundal morph is genetically different in trophic behaviour and morphology. The sympatric ecological divergence within the profundal habitat is possible because unexploited food resources (soft-bottom profundal prey) are available. Apparently, this represents a case of incipient segregation by expansion to new resource types (niche invasion), and not by subdivision of one broad ancestral niche.


Evolutionary Ecology | 2011

The role of gill raker number variability in adaptive radiation of coregonid fish

Kimmo K. Kahilainen; Anna Siwertsson; Karl Øystein Gjelland; Rune Knudsen; Thomas Bøhn; Per-Arne Amundsen

Gill raker divergence is a general pattern in adaptive radiations of postglacial fish, but few studies have addressed the adaptive significance of this morphological trait in foraging and eco-evolutionary interactions among predator and prey. Here, a set of subarctic lakes along a diversifying gradient of coregonids was used as the natural setting to explore correlations between gill raker numbers and planktivory as well as the impact of coregonid radiation on zooplankton communities. Results from 19 populations covering most of the total gill raker number gradient of the genus Coregonus, confirm that the number of gill rakers has a central role in determining the foraging ability towards zooplankton prey. Both at the individual and population levels, gill raker number was correlated with pelagic niche use and the size of utilized zooplankton prey. Furthermore, the average body size and the abundance and diversity of the zooplankton community decreased with the increasing diversity of coregonids. We argue that zooplankton feeding leads to an eco-evolutionary feedback loop that may further shape the gill raker morphology since natural selection intensifies under resource competition for depleted prey communities. Eco-evolutionary interactions may thus have a central role creating and maintaining the divergence of coregonid morphs in postglacial lakes.


Journal of Parasitology | 2004

AGGREGATION OF HELMINTHS: THE ROLE OF FEEDING BEHAVIOR OF FISH HOSTS

Rune Knudsen; Mark A. Curtis; Roar Kristoffersen

Individual Arctic charr (Salvelinus alpinus) from Fjellfrøsvatn, northern Norway, could be categorized by their stomach contents as zooplanktivores or benthivores. Feeding specialization among these fish was evident from negative correlations between helminths transmitted by pelagic copepods (Diphyllobothrium dendriticum and D. ditremum) and those transmitted by the benthic amphipod Gammarus lacustris (Cystidicola farionis and Cyathocephalus truncatus). Occurrences of parasite species acquired from the same types of invertebrate were positively correlated in the fish. Strong relationships among habitat use, diet, and helminth infections among the Arctic charr indicated persistent foraging patterns involving long-term habitat use and feeding specialization. The distribution of all parasite species was highly aggregated in the fish samples, measured by the exponent k of the fitted negative binomial distributions (range: 0.5–7.5) and the variance-to-mean ratios (s2/x̄, range: 5–85). Charr specializing on either copepods or Gammarus predominantly contributed to high-intensity class intervals within the overall frequency distributions of the corresponding parasite species. Such fish had low infection intensities of helminths transmitted by other prey organisms. The detailed analyses of the parasite frequency distributions for fish with different habitat or feeding preferences evidently show how heterogeneity in trophic behavior contributes strongly to the commonly observed aggregation of helminths among hosts under natural conditions.


Journal of Animal Ecology | 2010

Temporal stability of individual feeding specialization may promote speciation.

Rune Knudsen; Raul Primicerio; Per-Arne Amundsen; Anders Klemetsen

1. Inter-individual differences in trophic behaviour are considered important in the disruptive selection process for resource specialization and may represent an early phase in the evolution of polymorphism and adaptive radiation. Here, we provide evidence of high stability of individual trophic niches of a fish predator from a 15-year study. 2. Individual resource specialization was investigated by combining data from analyses of stomach contents (recent trophic niche), trophically transmitted parasites (long-term niche) and trophic morphology (niche adaptations) from single specimens of a postglacial fish (Arctic charr) population sampled from contrasting pelagic and littoral habitats. 3. Based on the relationships between morphology, parasites and diet, high inter-individual temporal consistency of narrow niches (zooplanktivorous vs. benthivorous) was evident through the ontogeny of the charr, indicating low degree of switching both in habitat utilization and feeding strategy of individual fish. Co-occurrence of differently specialized behavioural phenotypes was sustained over multiple generations. 4. The stable long-term habitat and feeding specializations may represent an important initial step in an adaptive radiation process, and our findings suggest a case of sympatric speciation into two incipient forms diverging along the littoral-pelagic resource axis.


Environmental Biology of Fishes | 2008

Seasonal and ontogenetic variations in resource use by two sympatric Arctic charr morphs

Per-Arne Amundsen; Rune Knudsen; Anders Klemetsen

The study compares the resource utilization of two sympatric Arctic charr morphs over an annual period in a subarctic lake. The two morphs are reproductively isolated in time and place of spawning, and are referred to as the littoral and profundal morphs (L-morph and P-morph) according to their spawning habitats. Fish were sampled monthly (ice-free season) or bimonthly (winter) using gillnets in the main lake habitats. The spatial range of the P-morph was restricted to the profundal zone throughout the whole annual period. The L-morph in contrast utilized all main habitats, exhibiting distinct seasonal and ontogenetic variations in habitat distribution. In the spring, the whole L-morph population was located along the bottom profile of the lake, in profundal and littoral habitats. During summer and autumn, habitat segregation occurred between different life-stages, juveniles mainly utilizing the profundal, pre-adults the pelagic and adult fishes the littoral zone. During winter the whole population was assembled in the littoral habitat. The L-morph also had large seasonal and ontogenetic variations in their feeding ecology, with littoral zoobenthos, zooplankton and surface insects being important prey. The P-morph had a narrower diet niche mainly consisting of chironomid larvae and other profundal zoobenthos. Hence, the two Arctic charr morphs exhibited a consistent resource differentiation during all annual seasons and throughout their life cycles, except for a dietary overlap between P-morph and juvenile L-morph charr in the profundal during summer. The findings are discussed in relation to resource polymorphism and incipient speciation.


Environmental Biology of Fishes | 2002

Takvatn through 20 years: long-term effects of an experimental mass removal of Arctic charr, Salvelinus alpinus, from a subarctic lake

Anders Klemetsen; Per-Arne Amundsen; Per E. Grotnes; Rune Knudsen; Roar Kristoffersen; Martin-A. Svenning

Between 1984 and 1989, the experimental removal of 31 tons (666 000 fish) of stunted Arctic charr, Salvelinus alpinus, from Takvatn in northern Norway, had strong effects on the populations of Arctic charr, brown trout, Salmo trutta, and three-spined sticklebacks, Gasterosteus aculeatus. The littoral catch per unit effort (CPUE) of charr had decreased by 90% in 1990 and then increased to about 50% of the initial level by 1994 while the pelagic CPUE had decreased to zero. Growth in both charr and trout greatly improved when the charr density had decreased, and large fish of both species appeared in the catches. These large fish became predators on small charr in the littoral zone. The incidence of trout increased from below 1% to 15% from 1988 to 1999 after a brief peak at 30% in 1992 and 1993. The charr population attained a bimodal size distribution and did not return to the stunted state during the 10 years following the intensive fishing period. The mass removal experiment showed that it is possible to change the structure of a charr population by intensive fishing. Predation on small charr from cannibals and large trout was probably essential for maintaining the new population structure. An increase in the growth of young charr from 1995 to 1997 was related to a high consumption of Daphnia and Eurycercus. Rapid changes in the growth of charr followed the density fluctuations in sticklebacks, which show large annual variations in this system; the rapid changes in charr growth were probably caused by variations in the competition intensity for cladoceran prey between young charr and sticklebacks. Twenty years of data has provided important information, but even more time is needed to follow the long-term trends in northern lakes such as Takvatn.


Ecology and Evolution | 2013

Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats

Kim Præbel; Rune Knudsen; Anna Siwertsson; Markku Karhunen; Kimmo K. Kahilainen; Otso Ovaskainen; Kjartan Østbye; Stefano Peruzzi; Svein-Erik Fevolden; Per-Arne Amundsen

Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral–pelagic resource axis; and (2) a more variable littoral–profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.

Collaboration


Dive into the Rune Knudsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roar Kristoffersen

Norwegian College of Fishery Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge