Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rune Sætre is active.

Publication


Featured researches published by Rune Sætre.


Bioinformatics | 2009

Evaluating contributions of natural language parsers to protein–protein interaction extraction

Yusuke Miyao; Kenji Sagae; Rune Sætre; Takuya Matsuzaki; Jun’ichi Tsujii

Motivation: While text mining technologies for biomedical research have gained popularity as a way to take advantage of the explosive growth of information in text form in biomedical papers, selecting appropriate natural language processing (NLP) tools is still difficult for researchers who are not familiar with recent advances in NLP. This article provides a comparative evaluation of several state-of-the-art natural language parsers, focusing on the task of extracting protein–protein interaction (PPI) from biomedical papers. We measure how each parser, and its output representation, contributes to accuracy improvement when the parser is used as a component in a PPI system. Results: All the parsers attained improvements in accuracy of PPI extraction. The levels of accuracy obtained with these different parsers vary slightly, while differences in parsing speed are larger. The best accuracy in this work was obtained when we combined Miyao and Tsujiis Enju parser and Charniak and Johnsons reranking parser, and the accuracy is better than the state-of-the-art results on the same data. Availability: The PPI extraction system used in this work (AkanePPI) is available online at http://www-tsujii.is.s.u-tokyo.ac.jp/-100downloads/downloads.cgi. The evaluated parsers are also available online from each developers site. Contact: [email protected]


International Journal of Medical Informatics | 2009

Protein–protein interaction extraction by leveraging multiple kernels and parsers

Makoto Miwa; Rune Sætre; Yusuke Miyao; Jun’ichi Tsujii

Protein-protein interaction (PPI) extraction is an important and widely researched task in the biomedical natural language processing (BioNLP) field. Kernel-based machine learning methods have been used widely to extract PPI automatically, and several kernels focusing on different parts of sentence structure have been published for the PPI task. In this paper, we propose a method to combine kernels based on several syntactic parsers, in order to retrieve the widest possible range of important information from a given sentence. We evaluate the method using a support vector machine (SVM), and we achieve better results than other state-of-the-art PPI systems on four out of five corpora. Further, we analyze the compatibility of the five corpora from the viewpoint of PPI extraction, and we see that some of them have small incompatibilities, but they can still be combined with a little effort.


BMC Bioinformatics | 2011

BioCreative III interactive task: an overview

Cecilia N. Arighi; Phoebe M. Roberts; Shashank Agarwal; Sanmitra Bhattacharya; Gianni Cesareni; Andrew Chatr-aryamontri; Simon Clematide; Pascale Gaudet; Michelle G. Giglio; Ian Harrow; Eva Huala; Martin Krallinger; Ulf Leser; Donghui Li; Feifan Liu; Zhiyong Lu; Lois J Maltais; Naoaki Okazaki; Livia Perfetto; Fabio Rinaldi; Rune Sætre; David Salgado; Padmini Srinivasan; Philippe Thomas; Luca Toldo; Lynette Hirschman; Cathy H. Wu

BackgroundThe BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested.ResultsA User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and gene-oriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation.DiscussionThe IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users should be actively involved in every phase of software development, and this will be strongly encouraged in future tasks. The IAT Task provides the first steps toward the definition of metrics and functional requirements that are necessary for designing a formal evaluation of interactive curation systems in the BioCreative IV challenge.


IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2010

Extracting Protein Interactions from Text with the Unified AkaneRE Event Extraction System

Rune Sætre; Kazuhiro Yoshida; Makoto Miwa; Takuya Matsuzaki; Yoshinobu Kano; Jun’ichi Tsujii

Currently, relation extraction (RE) and event extraction (EE) are the two main streams of biological information extraction. In 2009, the majority of these RE and EE research efforts were centered around the BioCreative II.5 Protein-Protein Interaction (PPI) challenge and the “BioNLP event extraction shared task.” Although these challenges took somewhat different approaches, they share the same ultimate goal of extracting bio-knowledge from the literature. This paper compares the two challenge task definitions, and presents a unified system that was successfully applied in both these and several other PPI extraction task settings. The AkaneRE system has three parts: A core engine for RE, a pool of modules for specific solutions, and a configuration language to adapt the system to different tasks. The core engine is based on machine learning, using either Support Vector Machines or Statistical Classifiers and features extracted from given training data. The specific modules solve tasks like sentence boundary detection, tokenization, stemming, part-of-speech tagging, parsing, named entity recognition, generation of potential relations, generation of machine learning features for each relation, and finally, assignment of confidence scores and ranking of candidate relations. With these components, the AkaneRE system produces state-of-the-art results, and the system is freely available for academic purposes at http://www-tsujii.is.s.u-tokyo.ac.jp/satre/akane/.


BMC Bioinformatics | 2009

Investigating heterogeneous protein annotations toward cross-corpora utilization

Yue Wang; Jin-Dong Kim; Rune Sætre; Sampo Pyysalo; Jun’ichi Tsujii

BackgroundThe number of corpora, collections of structured texts, has been increasing, as a result of the growing interest in the application of natural language processing methods to biological texts. Many named entity recognition (NER) systems have been developed based on these corpora. However, in the biomedical community, there is yet no general consensus regarding named entity annotation; thus, the resources are largely incompatible, and it is difficult to compare the performance of systems developed on resources that were divergently annotated. On the other hand, from a practical application perspective, it is desirable to utilize as many existing annotated resources as possible, because annotation is costly. Thus, it becomes a task of interest to integrate the heterogeneous annotations in these resources.ResultsWe explore the potential sources of incompatibility among gene and protein annotations that were made for three common corpora: GENIA, GENETAG and AIMed. To show the inconsistency in the corpora annotations, we first tackle the incompatibility problem caused by corpus integration, and we quantitatively measure the effect of this incompatibility on protein mention recognition. We find that the F-score performance declines tremendously when training with integrated data, instead of training with pure data; in some cases, the performance drops nearly 12%. This degradation may be caused by the newly added heterogeneous annotations, and cannot be fixed without an understanding of the heterogeneities that exist among the corpora. Motivated by the result of this preliminary experiment, we further qualitatively analyze a number of possible sources for these differences, and investigate the factors that would explain the inconsistencies, by performing a series of well-designed experiments. Our analyses indicate that incompatibilities in the gene/protein annotations exist mainly in the following four areas: the boundary annotation conventions, the scope of the entities of interest, the distribution of annotated entities, and the ratio of overlap between annotated entities. We further suggest that almost all of the incompatibilities can be prevented by properly considering the four aspects aforementioned.ConclusionOur analysis covers the key similarities and dissimilarities that exist among the diverse gene/protein corpora. This paper serves to improve our understanding of the differences in the three studied corpora, which can then lead to a better understanding of the performance of protein recognizers that are based on the corpora.


international conference on computational science and its applications | 2005

Semantic annotation of biomedical literature using google

Rune Sætre; Amund Tveit; Tonje Strømmen Steigedal; Astrid Lægreid

With the increasing amount of biomedical literature, there is a need for automatic extraction of information to support biomedical researchers. Due to incomplete biomedical information databases, the extraction is not straightforward using dictionaries, and several approaches using contextual rules and machine learning have previously been proposed. Our work is inspired by the previous approaches, but is novel in the sense that it is using Google for semantic annotation of the biomedical words. The semantic annotation accuracy obtained – 52% on words not found in the Brown Corpus, Swiss-Prot or LocusLink (accessed using Gsearch.org) – is justifying further work in this direction.


BMC Bioinformatics | 2011

U-Compare bio-event meta-service: compatible BioNLP event extraction services

Yoshinobu Kano; Jari Björne; Filip Ginter; Tapio Salakoski; Ekaterina Buyko; Udo Hahn; K. Bretonnel Cohen; Karin Verspoor; Christophe Roeder; Lawrence Hunter; Halil Kilicoglu; Sabine Bergler; Sofie Van Landeghem; Thomas Van Parys; Yves Van de Peer; Makoto Miwa; Sophia Ananiadou; Mariana Neves; Alberto Pascual-Montano; Arzucan Özgür; Dragomir R. Radev; Sebastian Riedel; Rune Sætre; Hong-Woo Chun; Jin-Dong Kim; Sampo Pyysalo; Tomoko Ohta; Jun’ichi Tsujii

BACKGROUND Bio-molecular event extraction from literature is recognized as an important task of bio text mining and, as such, many relevant systems have been developed and made available during the last decade. While such systems provide useful services individually, there is a need for a meta-service to enable comparison and ensemble of such services, offering optimal solutions for various purposes. RESULTS We have integrated nine event extraction systems in the U-Compare framework, making them intercompatible and interoperable with other U-Compare components. The U-Compare event meta-service provides various meta-level features for comparison and ensemble of multiple event extraction systems. Experimental results show that the performance improvements achieved by the ensemble are significant. CONCLUSIONS While individual event extraction systems themselves provide useful features for bio text mining, the U-Compare meta-service is expected to improve the accessibility to the individual systems, and to enable meta-level uses over multiple event extraction systems such as comparison and ensemble.


Artificial Intelligence in Medicine | 2011

Terminological resources for text mining over biomedical scientific literature

Fabio Rinaldi; Kaarel Kaljurand; Rune Sætre

OBJECTIVE We present a combined terminological resource for text mining over biomedical literature. The purpose of the resource is to allow the detection of mentions of specific biological entities in scientific publications, and their grounding to widely accepted identifiers. This is an essential process, useful in itself, and necessary as an intermediate step for almost every type of complex text mining application. METHODS We discuss some of the properties of the terminology for this domain, in particular the degree of ambiguity, which constitutes a peculiar problem for text mining applications. Without a correct recognition and disambiguation of the domain entities no reliable results can be produced. RESULTS We also discuss an application that makes use of the resulting terminological knowledge base. We annotate an existing corpus of sentences about protein interactions. The annotation consists of a normalization step that matches the terms in our resource with their actual representation in the corpus, and a disambiguation step that resolves the ambiguity of matched terms. CONCLUSION In this paper we present a large terminological resource, compiled through the aggregation of a number of different manually curated sources. We discuss the lexical properties of such resources, specifically the degree of ambiguity of the terms, and we inspect the causes of such ambiguity, in particular for protein names. This information is of vital importance for the implementation of an efficient term normalization and grounding algorithm.


BMC Bioinformatics | 2010

Medie and Info-pubmed: 2010 update

Tomoko Ohta; Takuya Matsuzaki; Naoaki Okazaki; Makoto Miwa; Rune Sætre; Sampo Pyysalo; Jun’ichi Tsujii

In the recent decades, high-throughput screening methods were established, bringing forth major breakthroughs in the fields of molecular biology and biomedicine. Since researchers in these fields need to interpret an enormous quantity of data and the publication rates of scientific articles are exploding, demands on text mining technology are growing with each passing year. Medie (http://www-tsujii.is.s.u-tokyo.ac.jp/medie/) and Info-pubmed (http://www-tsujii.is.s.u-tokyo.ac.jp/info-pubmed/) were developed as a response to these information needs. Medie is a general-purpose integrated Pubmed search engine and Info-pubmed is a targeted system for finding information about the interactions of key biomedical entities. In this work, the first update of these systems since their introduction, we present multiple extensions of the systems based on recent advances in biomedical text mining.


pacific symposium on biocomputing | 2007

FILLING THE GAPS BETWEEN TOOLS AND USERS: A TOOL COMPARATOR, USING PROTEIN-PROTEIN INTERACTION AS AN EXAMPLE

Yoshinobu Kano; Ngan L. T. Nguyen; Rune Sætre; Kazuhiro Yoshida; Yusuke Miyao; Yoshimasa Tsuruoka; Yuichiroh Matsubayashi; Sophia Ananiadou; Jun’ichi Tsujii

Recently, several text mining programs have reached a near-practical level of performance. Some systems are already being used by biologists and database curators. However, it has also been recognized that current Natural Language Processing (NLP) and Text Mining (TM) technology is not easy to deploy, since research groups tend to develop systems that cater specifically to their own requirements. One of the major reasons for the difficulty of deployment of NLP/TM technology is that re-usability and interoperability of software tools are typically not considered during development. While some effort has been invested in making interoperable NLP/TM toolkits, the developers of end-to-end systems still often struggle to reuse NLP/TM tools, and often opt to develop similar programs from scratch instead. This is particularly the case in BioNLP, since the requirements of biologists are so diverse that NLP tools have to be adapted and re-organized in a much more extensive manner than was originally expected. Although generic frameworks like UIMA (Unstructured Information Management Architecture) provide promising ways to solve this problem, the solution that they provide is only partial. In order for truly interoperable toolkits to become a reality, we also need sharable type systems and a developer-friendly environment for software integration that includes functionality for systematic comparisons of available tools, a simple I/O interface, and visualization tools. In this paper, we describe such an environment that was developed based on UIMA, and we show its feasibility through our experience in developing a protein-protein interaction (PPI) extraction system.

Collaboration


Dive into the Rune Sætre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Miwa

Toyota Technological Institute

View shared research outputs
Top Co-Authors

Avatar

Yusuke Miyao

National Institute of Informatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takuya Matsuzaki

National Institute of Informatics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge