Runpei Wu
La Jolla Institute for Allergy and Immunology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Runpei Wu.
Circulation Research | 2012
Richard N. Hanna; Iftach Shaked; Harper Hubbeling; Jennifer A. Punt; Runpei Wu; Claudia Zaugg; Hong Pei; Frederic Geissmann; Klaus Ley; Catherine C. Hedrick
Rationale: NR4A1 (Nur77) is a nuclear receptor that is expressed in macrophages and within atherosclerotic lesions, yet its function in atherosclerosis is unknown. Objective: Nur77 regulates the development of monocytes, particularly patrolling Ly6C− monocytes that may be involved in resolution of inflammation. We sought to determine how absence of nuclear receptor subfamily 4, group A, member 1 (NR4A1) in hematopoietic cells affected atherosclerosis development. Methods and Results: Nur77−/− chimeric mice on a Ldlr−/− background showed a 3-fold increase in atherosclerosis development when fed a Western diet for 20 weeks, despite having a drastic reduction in Ly6C− patrolling monocytes. In a second model, mice deficient in both Nur77 and ApoE (ApoE−/−Nur77−/−) also showed increased atherosclerosis after 11 weeks of Western diet. Atherosclerosis was associated with a significant change in macrophage polarization toward a proinflammatory phenotype, with high expression of tumor necrosis factor-&agr; and nitric oxide and low expression of Arginase-I. Moreover, we found increased expression of toll-like receptor 4 mRNA and protein in Nur77−/− macrophages as well as increased phosphorylation of the p65 subunit of NF&kgr;B. Inhibition of NF&kgr;B activity blocked excess activation of Nur77−/− macrophages. Conclusions: We conclude that the absence of Nur77 in monocytes and macrophages results in enhanced toll-like receptor signaling and polarization of macrophages toward a proinflammatory M1 phenotype. Despite having fewer monocytes, Nur77−/− mice developed significant atherosclerosis when fed a Western diet. These studies indicate that Nur77 is a novel target for modulating the inflammatory phenotype of monocytes and macrophages and may be important for regulation of atherogenesis.
Science | 2015
Richard N. Hanna; Caglar Cekic; Duygu Sag; Robert Tacke; Graham D. Thomas; Heba Nowyhed; Nicole Rasquinha; Sara McArdle; Runpei Wu; Esther Peluso; Daniel Metzger; Hiroshi Ichinose; Iftach Shaked; Grzegorz Chodaczek; Subhra K. Biswas; Catherine C. Hedrick
Monocytes block tumor access to the lung Metastatic cancer is especially hard to treat. In order to find potential new therapeutic targets, scientists are trying to understand the cellular events that promote or prevent metastasis. Hanna et al. now report a role for patrolling monocytes in blocking tumor metastasis to the lungs in mice. Tumors in mice engineered to lack patrolling monocytes showed increased metastasis to the lung but not to other tissues. Patrolling monocytes resided in the microvasculature of the lung, where they engulfed tumor material, which may explain how these cells prevent tumors from colonizing the lung. Science, this issue p. 985 An immune cell subset called patrolling monocytes prevents tumor lung metastasis in mice. The immune system plays an important role in regulating tumor growth and metastasis. Classical monocytes promote tumorigenesis and cancer metastasis, but how nonclassical “patrolling” monocytes (PMo) interact with tumors is unknown. Here we show that PMo are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack PMo, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient PMo into Nr4a1-deficient mice prevented tumor invasion in the lung. PMo established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature, and promoted natural killer cell recruitment and activation. Thus, PMo contribute to cancer immunosurveillance and may be targets for cancer immunotherapy.
Nature Communications | 2015
Duygu Sag; Caglar Cekic; Runpei Wu; Joel Linden; Catherine C. Hedrick
ATP-binding Cassette Transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here, we demonstrate a role of ABCG1 as a mediator of tumor immunity. Abcg1−/− mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumor growth in Abcg1−/− mice is myeloid cell-intrinsic and is associated with a phenotypic shift of the macrophages from a tumor-promoting M2 to a tumor-fighting M1 within the tumor. Abcg1−/− macrophages exhibit an intrinsic bias toward M1 polarization with increased NF-κB activation and direct cytotoxicity for tumor cells in vitro. Overall, our study demonstrates that absence of ABCG1 inhibits tumor growth through modulation of macrophage function within the tumor and illustrates a link between cholesterol homeostasis and cancer.
PLOS ONE | 2013
Hsin-Yuan Cheng; Runpei Wu; Abraham K. Gebre; Richard N. Hanna; Daniel J. Smith; John S. Parks; Klaus Ley; Catherine C. Hedrick
Gammadelta (γδ) T lymphocytes respond quickly upon antigen encounter to produce a cytokine response. In this study, we sought to understand how functions of γδ T cells are differentially regulated compared to αβ T cells. We found that cholesterol, an integral component of the plasma membrane and a regulator of TCR signaling, is increased in γδ T cells compared to αβ T cells, and modulates their function. Higher levels of activation markers, and increased lipid raft content in γδ cells suggest that γδ T cells are more activated. Cholesterol depletion effectively decreased lipid raft formation and activation of γδ T cells, indicating that increased cholesterol content contributes to the hyper-activated phenotype of γδ T cells, possibly through enhanced clustering of TCR signals in lipid rafts. TCR stimulation assays and western blotting revealed that instead of a lower TCR threshold, enhanced TCR signaling through ERK1/2 activation is likely the cause for high cholesterol-induced rapid activation and proliferation in γδ T cells. Our data indicate that cholesterol metabolism is differentially regulated in γδ T cells. The high intracellular cholesterol content leads to enhanced TCR signaling and increases activation and proliferation of γδ T cells.
Scientific Reports | 2015
Robert Tacke; Ingo Hilgendorf; Hannah Garner; Claire Waterborg; Kiwon Park; Heba Nowyhed; Richard N. Hanna; Runpei Wu; Filip K. Swirski; Frederic Geissmann; Catherine C. Hedrick
Tissue macrophages function to maintain homeostasis and regulate immune responses. While tissue macrophages derive from one of a small number of progenitor programs, the transcriptional requirements for site-specific macrophage subset development are more complex. We have identified a new tissue macrophage subset in the thymus and have discovered that its development is dependent on transcription factor NR4A1. Functionally, we find that NR4A1-dependent macrophages are critically important for clearance of apoptotic thymocytes. These macrophages are largely reduced or absent in mice lacking NR4A1, and Nr4a1-deficient mice have impaired thymocyte engulfment and clearance. Thus, NR4A1 functions as a master transcription factor for the development of this novel thymus-specific macrophage subset.
Journal of Clinical Investigation | 2016
Hsin-Yuan Cheng; Dalia E. Gaddis; Runpei Wu; Chantel McSkimming; LaTeira D. Haynes; Angela M. Taylor; Coleen A. McNamara; Mary G. Sorci-Thomas; Catherine C. Hedrick
ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol accumulation and alters T cell homeostasis, which may contribute to progression of atherosclerosis. Here, we investigated how the selective loss of ABCG1 in T cells impacts atherosclerosis in LDL receptor-deficient (LDLR-deficient) mice, a model of the disease. In LDLR-deficient mice fed a high-cholesterol diet, T cell-specific ABCG1 deficiency protected against atherosclerotic lesions. Furthermore, T cell-specific ABCG1 deficiency led to a 30% increase in Treg percentages in aorta and aorta-draining lymph nodes (LNs) of these mice compared with animals with only LDLR deficiency. When Abcg1 was selectively deleted in Tregs of LDLR-deficient mice, we observed a 30% increase in Treg percentages in aorta and aorta-draining LNs and reduced atherosclerosis. In the absence of ABCG1, intracellular cholesterol accumulation led to downregulation of the mTOR pathway, which increased the differentiation of naive CD4 T cells into Tregs. The increase in Tregs resulted in reduced T cell activation and increased IL-10 production by T cells. Last, we found that higher ABCG1 expression in Tregs was associated with a higher frequency of these cells in human blood samples. Our study indicates that ABCG1 regulates T cell differentiation into Tregs, highlighting a pathway by which cholesterol accumulation can influence T cell homeostasis in atherosclerosis.
Atherosclerosis | 2014
Hsin-Yuan Cheng; Runpei Wu; Catherine C. Hedrick
OBJECTIVE Gammadelta (γδ) T cells are a subset of pro-inflammatory innate-like T lymphocytes that serve as a bridge between innate and adaptive immunity. γδ T cells are highly enriched in cholesterol compared to αβ T cells. In this study, we aimed to identify the role of γδ T cells in atherosclerosis, a cholesterol and inflammation-driven disease. METHODS We found that the percentages of γδ T cells are increased in ApoE(-/-) mice fed a Western diet. We generated TCRδ(-/-)ApoE(-/-) mice and fed them either rodent chow or a Western diet for ten weeks for the assessment of atherosclerosis. RESULTS The atherosclerotic lesion size in diet-fed TCRδ(-/-)ApoE(-/-) mice was similar to that of diet-fed ApoE(-/-) mice. There were no differences in cytokine production or numbers of αβ T cells in aorta of TCRδ(-/-)ApoE(-/-) mice. Plasma lipoprotein profiles were unchanged by the absence of γδ T cells. CONCLUSION Our data suggest that γδ T cells do not contribute to early atherosclerotic plaque development.
Journal of Immunology | 2012
Duygu Sag; Gerhard Wingender; Heba Nowyhed; Runpei Wu; Abraham K. Gebre; John S. Parks; Mitchell Kronenberg; Catherine C. Hedrick
ATP-binding cassette transporter G1 (ABCG1) plays a role in the intracellular transport of cholesterol. Invariant NKT (iNKT) cells are a subpopulation of T lymphocytes that recognize glycolipid Ags. In this study, we demonstrate that ABCG1 regulates iNKT cell development and functions in a cell-intrinsic manner. Abcg1−/− mice displayed reduced frequencies of iNKT cells in thymus and periphery. Thymic iNKT cells deficient in ABCG1 had reduced membrane lipid raft content, and showed impaired proliferation and defective maturation during the early stages of development. Moreover, we found that Abcg1−/− mice possess a higher frequency of Vβ7+ iNKT cells, suggesting alterations in iNKT cell thymic selection. Furthermore, in response to CD3ε/CD28 stimulation, Abcg1−/− thymic iNKT cells showed reduced production of IL-4 but increased production of IFN-γ. Our results demonstrate that changes in intracellular cholesterol homeostasis by ABCG1 profoundly impact iNKT cell development and function.
Scientific Reports | 2015
Heba Nowyhed; Tridu R. Huynh; Amy Blatchley; Runpei Wu; Graham D. Thomas; Catherine C. Hedrick
The NR4A nuclear receptor family member Nr4a1 is strongly induced in thymocytes undergoing selection, and has been shown to control the development of Treg cells; however the role of Nr4a1 in CD8+ T cells remains undefined. Here we report a novel role for Nr4a1 in regulating the development and frequency of CD8+ T cells through direct transcriptional control of Runx3. We discovered that Nr4a1 recruits the corepressor, CoREST to suppress Runx3 expression in CD8+ T cells. Loss of Nr4a1 results in increased Runx3 expression in thymocytes which consequently causes a 2-fold increase in the frequency and total number of intrathymic and peripheral CD8+ T cells. Our findings establish Nr4a1 as a novel and critical player in the regulation of CD8 T cell development through the direct suppression of Runx3.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2017
Paola Marcovecchio; Graham D. Thomas; Zbigniew Mikulski; Erik Ehinger; Karin A.L. Mueller; Amy Blatchley; Runpei Wu; Yury I. Miller; Anh Nguyen; Angela M. Taylor; Coleen A. McNamara; Klaus Ley; Catherine C. Hedrick
Objective— Nonclassical monocytes (NCM) function to maintain vascular homeostasis by crawling or patrolling along the vessel wall. This subset of monocytes responds to viruses, tumor cells, and other pathogens to aid in protection of the host. In this study, we wished to determine how early atherogenesis impacts NCM patrolling in the vasculature. Approach and Results— To study the role of NCM in early atherogenesis, we quantified the patrolling behaviors of NCM in ApoE−/− (apolipoprotein E) and C57BL/6J mice fed a Western diet. Using intravital imaging, we found that NCM from Western diet–fed mice display a 4-fold increase in patrolling activity within large peripheral blood vessels. Both human and mouse NCM preferentially engulfed OxLDL (oxidized low-density lipoprotein) in the vasculature, and we observed that OxLDL selectively induced NCM patrolling in vivo. Induction of patrolling during early atherogenesis required scavenger receptor CD36, as CD36−/− mice revealed a significant reduction in patrolling activity along the femoral vasculature. Mechanistically, we found that CD36-regulated patrolling was mediated by a SFK (src family kinase) through DAP12 (DNAX activating protein of 12KDa) adaptor protein. Conclusions— Our studies show a novel pathway for induction of NCM patrolling along the vascular wall during early atherogenesis. Mice fed a Western diet showed increased NCM patrolling activity with a concurrent increase in SFK phosphorylation. This patrolling activity was lost in the absence of either CD36 or DAP12. These data suggest that NCM function in an atheroprotective manner through sensing and responding to oxidized lipoprotein moieties via scavenger receptor engagement during early atherogenesis.