Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Runqing Jiang is active.

Publication


Featured researches published by Runqing Jiang.


Journal of Applied Clinical Medical Physics | 2011

Dosimetry of oblique tangential photon beams calculated by superposition/convolution algorithms: a Monte Carlo evaluation

J Chow; Runqing Jiang; Michael K. K. Leung

Although there are many works on evaluating dose calculations of the anisotropic analytical algorithm (AAA) using various homogeneous and heterogeneous phantoms, related work concerning dosimetry due to tangential photon beam is lacking. In this study, dosimetry predicted by the AAA and collapsed cone convolution (CCC) algorithm was evaluated using the tangential photon beam and phantom geometry. The photon beams of 6 and 15 MV with field sizes of 4×4 (or 7×7), 10×10 and 20×20 cm2, produced by a Varian 21 EX linear accelerator, were used to test performances of the AAA and CCC using Monte Carlo (MC) simulation (EGSnrc‐based code) as a benchmark. Horizontal dose profiles at different depths, phantom skin profiles (i.e., vertical dose profiles at a distance of 2 mm from the phantom lateral surface), gamma dose distributions, and dose‐volume histograms (DVHs) of skin slab were determined. For dose profiles at different depths, the CCC agreed better with doses in the air‐phantom region, while both the AAA and CCC agreed well with doses in the penumbra region, when compared to the MC. Gamma evaluations between the AAA/CCC and MC showed that deviations of 2D dose distribution occurred in both beam edges in the phantom and air‐phantom interface. Moreover, the gamma dose deviation is less significant in the air‐phantom interface than the penumbra. DVHs of skin slab showed that both the AAA and CCC underestimated the width of the dose drop‐off region for both the 6 and 15MV photon beams. When the gantry angle was 0°, it was found that both the AAA and CCC overestimated doses in the phantom skin profiles compared to the MC, with various photon beam energies and field sizes. The mean dose differences with doses normalized to the prescription point for the AAA and CCC were respectively:7.6%±2.6% and 2.1%±1.3% for a 10×10 cm2 field, 6 MV; 16.3%±2.1% and 6.7%±2.1% for a 20×20 cm2 field, 6 MV; 5.5%±1.2% and 1.7%±1.4% for a 10×10 cm2, 15 MV; 18.0%±1.3% and 8.3%±1.8% for a 20×20 cm2, 15 MV. However, underestimations of doses in the phantom skin profile were found with small fields of 4×4 and 7×7 cm2 for the 6 and 15 MV photon beams, respectively, when the gantry was turned 5° anticlockwise. As surface dose with tangential photon beam geometry is important in some radiation treatment sites such as breast, chest wall and sarcoma, it is found that neither of the treatment planning system algorithms can predict the dose well at depths shallower than 2 mm. The dosimetry data and beam and phantom geometry in this study provide a better knowledge of a dose calculation algorithm in tangential‐like irradiation. PACS numbers: 87.55.‐x, 87.53.Bn, 87.55.K‐, 87.55.kh, 87.56.jf


Journal of Applied Clinical Medical Physics | 2009

The effect of interfraction prostate motion on IMRT plans: a dose-volume histogram analysis using a Gaussian error function model

J Chow; Runqing Jiang; Daniel Markel

The Gaussian error function model, containing pairs of error and complementary error functions, was used to carry out cumulative dose‐volume histogram (cDVH) analysis on prostate intensity‐modulated radiation therapy (IMRT) plans with interfraction prostate motion. Cumulative DVHs for clinical target volumes (CTVs) shifted in the anterior‐posterior directions based on a 7‐beam IMRT plan were calculated and modeled using the Pinnacle 3 treatment planning system and a Gaussian error function, respectively. As the parameters in the error function model (namely, a, b and c) were related to the shape of the cDVH curve, evaluation of cDVHs corresponding to the prostate motion based on the model parameters becomes possible, as demonstrated in this study. It was found that deviations of the cDVH for the CTV were significant, when the CTV‐planning target volume (PTV) margin was underestimated in the anterior‐posterior directions. This was especially evident in the posterior direction for a patient with relatively small prostate volume (39 cm3). Analysis of the cDVH for the CTV shifting in the anterior‐posterior directions using the error function model showed that parameters a1,2, which were related to the maximum relative volume of the cDVH, changed symmetrically when the prostate was shifted in the anterior and posterior directions. This change was more significant for the larger prostate. For parameters b related to the slope of the cDVH,b1,2 changed symmetrically from the isocenter, when the CTV was within the PTV. This was different from parameters c (c1,2 are related to the maximum dose of the cDVH), which did not vary significantly with the prostate motion in the anterior‐posterior directions and prostate volume. Using the patient data, this analysis validated the error function model, and further verified the clinical application of this mathematical model on treatment plan evaluations. PACS number: 87.10.‐e, 87.55.‐x, 87.55.dk and 87.56.N‐


Medical Physics | 2008

Technical Note: Dose-volume histogram analysis in radiotherapy using the Gaussian error function

J Chow; D Markel; Runqing Jiang

A mathematical model based on the Gaussian error and complementary error functions was proposed to describe the cumulative dose-volume histogram (cDVH) for a region of interest in a radiotherapy plan. Parameters in the model (a, b, c) are related to different characteristics of the shape of a cDVH curve such as the maximum relative volume, slope and position of a curve drop off, respectively. A prostate phantom model containing a prostate, the seminal vesicle, bladder and rectum with cylindrical organ geometries was used to demonstrate the effect of interfraction prostate motion on the cDVH based on this error function model. The prostate phantom model was planned using a five-beam intensity modulated radiotherapy (IMRT), and a four-field box (4FB), technique with the clinical target volume (CTV) shifted in different directions from the center. In the case of the CTV moving out of the planning target volume (PTV), that is, the margin between the CTV and PTV is underestimated, parameter c (related to position of curve drop off) in the 4FB plan and parameters b (related to the slope of curve) and c in the IMRT plan vary significantly with CTV displacement. This shows that variation of the cDVH is present in the 4FB plan and such variation is more serious in the IMRT plan. These variations of cDVHs for 4FB and IMRT are due to the different dose gradients at the CTV edges in the anterior and posterior directions for the 4FB and IMRT plan. It is believed that a mathematical representation of the dose-volume relationship provides another viewpoint from which to illustrate problems with radiotherapy delivery such as internal organ motion that affect the dose distribution in a treatment plan.


Journal of Medical Physics | 2016

Dosimetric and radiobiological characterizations of prostate intensity-modulated radiotherapy and volumetric-modulated arc therapy: A single-institution review of ninety cases

Muhammad Isa Khan; Runqing Jiang; Alexander Kiciak; Jalil ur Rehman; Muhammad Afzal; J Chow

This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8-335 cm 3 ) and 50 VMAT patients (planning target volume = 120-351 cm 3 ) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D 99% of planning target volume; D 30% , D 50% , V 30 Gy and V 35 Gy of rectum and bladder; D 5% , V 14 Gy , V 22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy.


Medical Physics | 2010

Technical note: calculation of normal tissue complication probability using Gaussian error function model.

J Chow; D Markel; Runqing Jiang

PURPOSE The Gaussian error function was first used and verified in normal tissue complication probability (NTCP) calculation to reduce the dose-volume histogram (DVH) database by replacing the dose-volume bin set with the error function parameters for the differential DVH (dDVH). METHODS Seven-beam intensity modulated radiation therapy (IMRT) treatment planning was performed in three patients with small(40cm3), medium (53cm3), and large (87cm3) prostate volume, selected from a group of 20 patients. Rectal dDVH varying with the interfraction prostate motion along the anterior-posterior direction was determined by the treatment planning system (TPS) and modeled by the Gaussian error function model for the three patients. Rectal NTCP was then calculated based on the routine dose-volume bin set of the rectum by the TPS and the error function model. The variations in the rectal NTCP with the prostate motion and volume were studied. RESULTS For the ranges of prostate motion of 8-2, 4-8, and 4-3 mm along the anterior-posterior direction for the small, medium, and large prostate patient, the rectal NTCP was determined varying in the ranges of 4.6%-4.8%, 4.5%-4.7%, and 4.6%-4.7%, respectively. The deviation of the rectal NTCP calculated by the TPS and the Gaussian error function model was within ±0.1%. CONCLUSIONS The Gaussian error function was successfully applied in the NTCP calculation by replacing the dose-volume bin set with the model parameters. This provides an option in the NTCP calculation using a reduced size of dose-volume database. Moreover, the rectal NTCP was found varying in about ±0.2% with the interfraction prostate motion along the anterior-posterior direction in the radiation treatment. The dependence of the variation in the rectal NTCP with the interfraction prostate motion on the prostate volume was found to be more significant in the patient with larger prostate.


Medical Physics | 2010

Monte Carlo calculation of monitor unit for electron arc therapy

J Chow; Runqing Jiang

PURPOSE Monitor unit (MU) calculations for electron are therapy were carried out using Monte Carlo simulations and verified by measurements. Variations in the dwell factor (DF), source-to-surface distance (SSD), and treatment are angle (a) were studied. Moreover, the possibility of measuring the DF, which requires gantry rotation, using a solid water rectangular, instead of cylindrical, phantom was investigated. METHODS A phase space file based on the 9 MeV electron beam with rectangular cutout (physical size = 2.6 x 21 cm2) attached to the block tray holder of a Varian 21 EX linear accelerator (linac) was generated using the EGSnrc-based Monte Carlo code and verified by measurement. The relative output factor (ROF), SSD offset, and DF, needed in the MU calculation, were determined using measurements and Monte Carlo simulations. An ionization chamber, a radiographic film, a solid water rectangular phantom, and a cylindrical phantom made of polystyrene were used in dosimetry measurements. RESULTS Percentage deviations of ROF, SSD offset, and DF between measured and Monte Carlo results were 1.2%, 0.18%, and 1.5%, respectively. It was found that the DF decreased with an increase in a, and such a decrease in DF was more significant in the a range of 0 degrees-60 degrees than 60 degrees-120 degrees. Moreover, for a fixed a, the DF increased with an increase in SSD. Comparing the DF determined using the rectangular and cylindrical phantom through measurements and Monte Carlo simulations, it was found that the DF determined by the rectangular phantom agreed well with that by the cylindrical one within +/- 1.2%. It shows that a simple setup of a solid water rectangular phantom was sufficient to replace the cylindrical phantom using our specific cutout to determine the DF associated with the electron arc. CONCLUSIONS By verifying using dosimetry measurements, Monte Carlo simulations proved to be an alternative way to perform MU calculations effectively for electron are therapy. Since Monte Carlo simulations can generate a precalculated database of ROF, SSD offset, and DF for the MU calculation, with a reduction in human effort and linac beam-on time, it is recommended that Monte Carlo simulations be partially or completely integrated into the commissioning of electron are therapy.


Medical Physics | 2005

Sci‐AM1 Sat ‐ 06: Improved absorbed dose calculations incorporating internal organ motion

Runqing Jiang; R Barnett; James C L Chow; G Grigorov; Jeff Z. Y. Chen

The goal of radiation therapy is to deliver a highly conformal dose to a prescribed target volume and to spare surrounding healthy tissue as much as possible. Present commercial dose planning systems assume that patients anatomy is static over the course of treatment. During treatmentdelivery, however, dosimetric uncertainties arising from patient repositioning and internal organ motion are unavoidable practically. The purpose of this study is to evaluate the effect of prostate motion on the physical dose distribution by PTV ¯ 7 model based on the Pinnacle treatment planning system. Prostate motion, within the PTV, was represented by a weighted average of seven individually shifted PTVs ( PTV ¯ 7 ). As already well known, internal organ motion always leads to blurred contour surfaces. The dose coverage of PTV and critical organs is less as indicated by dose at “edge” of contours and also by decreased DVH particularly at high dose region. The averaged decrease of TCP between the static planning and PTV ¯ 7 model is 2.9%, and the rectum is spared if motion is equally weighted and symmetric. The PTV ¯ 7 configurations yield a better estimate of the actual dose in the rectal wall with decreasing NTCP. The effects of different shifting weight to TCP and NTCP in L‐R, A‐P and S‐I directions were also quantitatively analyzed. The calculation of the cumulative dose incorporating internal organ motion plays an important role in pursuing adaptive radiation therapy and dose escalation for IMRT with the goal of decreasing the dosedelivered to the normal critical structures.


Journal of Applied Clinical Medical Physics | 2014

Dosimetry of small bone joint calculated by the analytical anisotropic algorithm: A Monte Carlo evaluation using the EGSnrc

J Chow; Runqing Jiang; Amir M. Owrangi

This study compared a small bone joint dosimetry calculated by the anisotropic analytical algorithm (AAA) and Monte Carlo simulation using megavoltage (MV) photon beams. The performance of the AAA in the joint dose calculation was evaluated using Monte Carlo simulation, and dependences of joint dose on its width and beam angle were investigated. Small bone joint phantoms containing a vertical water layer (0.5‐2 mm) sandwiched by two bones (2×2×2cm3) were irradiated by the 6 and 15 MV photon beams with field size equal to 4×4 cm2. Depth doses along the central beam axis in a joint (cartilage) were calculated with and without a bolus (thickness=1.5cm) added on top of the phantoms. Different beam angles (0°‐15°) were used with the isocenter set to the center of the bone joint for dose calculations using the AAA (Eclipse treatment planning system) and Monte Carlo simulation (the EGSnrc code). For dosimetry comparison and normalization, dose calculations were repeated in homogeneous water phantoms with the bone substituted by water. Comparing the calculated dosimetry between the AAA and Monte Carlo simulation, the AAA underestimated joint doses varying with its widths by about 6%‐12% for 6 MV and 12%‐23% for 15 MV without bolus, and by 7% for 6 MV and 13%‐17% for 15 MV with bolus. Moreover, joint doses calculated by the AAA did not vary with the joint width and beam angle. From Monte Carlo results, there was a decrease in the calculated joint dose as the joint width increased, and a slight decrease as the beam angle increased. When bolus was added to the phantom, it was found that variations of joint dose with its width and beam angle became less significant for the 6 MV photon beams. In conclusion, dosimetry deviation in small bone joint calculated by the AAA and Monte Carlo simulation was studied using the 6 and 15 MV photon beam. The AAA could not predict variations of joint dose with its width and beam angle, which were predicted by the Monte Carlo simulations. PACS numbers: 87.55.K‐; 87.53.Bn; 87.53.‐jThis study compared a small bone joint dosimetry calculated by the anisotropic analytical algorithm (AAA) and Monte Carlo simulation using megavoltage (MV) photon beams. The performance of the AAA in the joint dose calculation was evaluated using Monte Carlo simulation, and dependences of joint dose on its width and beam angle were investigated. Small bone joint phantoms containing a vertical water layer (0.5-2 mm) sandwiched by two bones (2×2×2cm3) were irradiated by the 6 and 15 MV photon beams with field size equal to 4×4 cm2. Depth doses along the central beam axis in a joint (cartilage) were calculated with and without a bolus (thickness=1.5cm) added on top of the phantoms. Different beam angles (0°-15°) were used with the isocenter set to the center of the bone joint for dose calculations using the AAA (Eclipse treatment planning system) and Monte Carlo simulation (the EGSnrc code). For dosimetry comparison and normalization, dose calculations were repeated in homogeneous water phantoms with the bone substituted by water. Comparing the calculated dosimetry between the AAA and Monte Carlo simulation, the AAA underestimated joint doses varying with its widths by about 6%-12% for 6 MV and 12%-23% for 15 MV without bolus, and by 7% for 6 MV and 13%-17% for 15 MV with bolus. Moreover, joint doses calculated by the AAA did not vary with the joint width and beam angle. From Monte Carlo results, there was a decrease in the calculated joint dose as the joint width increased, and a slight decrease as the beam angle increased. When bolus was added to the phantom, it was found that variations of joint dose with its width and beam angle became less significant for the 6 MV photon beams. In conclusion, dosimetry deviation in small bone joint calculated by the AAA and Monte Carlo simulation was studied using the 6 and 15 MV photon beam. The AAA could not predict variations of joint dose with its width and beam angle, which were predicted by the Monte Carlo simulations. PACS numbers: 87.55.K-; 87.53.Bn; 87.53.-j.


Physics in Medicine and Biology | 2012

Beam coordinate transformations from DICOM to DOSXYZnrc

Lixin Zhan; Runqing Jiang; E Osei

Digital imaging and communications in medicine (DICOM) format is the de facto standard for communications between therapeutic and diagnostic modalities. A plan generated by a treatment planning system (TPS) is often exported in DICOM format. BEAMnrc/DOSXYZnrc is a widely used Monte Carlo (MC) package for modelling the Linac head and simulating dose delivery in radiotherapy. It has its own definition of beam orientation, which is not in compliance with the one defined in the DICOM standard. MC dose calculations using information from TPS generated plans require transformation of beam orientations to the DOSXYZnrc coordinate system (c.s.) and the transformation is non-trivial. There have been two studies on the coordinate transformations. The transformation equation sets derived have been helpful to BEAMnrc/DOSXYZnrc users. However, the transformation equation sets are complex mathematically and not easy to program. In this study, we derive a new set of transformation equations, which are more compact, easily understandable, and easier for computational implementation. The derivation of the polar angle θ and the azimuthal angle φ used by DOSXYZnrc is similar to the existing studies by applying a series of rotations to a vector in DICOM patient c.s. The derivation of the beam rotation ϕ(col) for DOSXYZnrc, however, is different. It is obtained by a direct combination of the actual collimator rotation with the projection of the couch rotation to the collimator rotating plane. Verification of the transformation has been performed using clinical plans. The comparisons between TPS and MC results show very good geometrical agreement for field placements, together with good agreement in dose distributions.


Medical Dosimetry | 2018

Dose-volume and radiobiological dependence on the calculation grid size in prostate VMAT planning

J Chow; Runqing Jiang

This study evaluated the effects of dose-volume and radiobiological dependence on the calculation grid size in prostate volumetric-modulated arc therapy (VMAT) planning. Ten patients with prostate cancer were selected for this retrospective treatment planning study. Prostate VMAT plans were created for the patients using the 6 MV photon beam produced by a Varian TrueBEAM linac with the calculation grid size equal to 1, 2, 2.5, 3, 4, and 5 mm. Dose-volume histograms (DVHs) of targets and organs at risk were generated for different grid sizes. We calculated the radiobiological parameters of the tumor control probability (TCP) of clinical target volume (CTV) and planning target volume (PTV), and the normal tissue complication probability (NTCP) of organs at risk (rectal wall, rectum, bladder wall, bladder, left femur, and right femur). The homogeneity, conformity, and gradient indexes of CTV and PTV were calculated for different grid sizes. The TCP of PTV was found decreasing with a rate of 0.06%/mm when the calculation grid size increased from 1 to 5 mm. On the other hand, both NTCPs of rectal wall and rectum were found decreasing with rates of 0.03%/mm and 0.05%/mm, respectively, with an increase of grid size. The homogeneity index of PTV increased with a rate of 0.57/mm of the calculation grid size, whereas the conformity index of PTV decreased with a rate of 0.0075/mm. The gradient index of PTV was found increasing with a rate equal to 0.05/mm. In prostate VMAT planning, variations of dose-volume and radiobiological parameters with calculation grid size on PTV, rectal wall, and rectum were more significant than those of CTV and other organs at risk such as bladder wall, bladder, and femurs. Results in this study are important in the treatment planning quality assurance when the calculation grid size is varied to compromise a shorter dose computing time.

Collaboration


Dive into the Runqing Jiang's collaboration.

Top Co-Authors

Avatar

J Chow

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest Osei

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R Barnett

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge