Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Runsheng Chen is active.

Publication


Featured researches published by Runsheng Chen.


Science | 2002

A draft sequence of the rice genome (Oryza sativa L. ssp indica)

Jun Yu; Songnian Hu; Jun Wang; Gane Ka-Shu Wong; Songgang Li; Bin Liu; Yajun Deng; Yan Zhou; Xiuqing Zhang; Mengliang Cao; Jing Liu; Jiandong Sun; Jiabin Tang; Yanjiong Chen; Xiaobing Huang; Wei Lin; Chen Ye; Wei Tong; Lijuan Cong; Jianing Geng; Yujun Han; Lin Li; Wei Li; Guangqiang Hu; Xiangang Huang; Wenjie Li; Jian Li; Zhanwei Liu; Long Li; Jianping Liu

The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.


The Plant Cell | 2010

Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids

Guangming He; Xiaopeng Zhu; Axel A. Elling; Liangbi Chen; Xiangfeng Wang; Lan Guo; Manzhong Liang; Hang He; Huiyong Zhang; Fangfang Chen; Yijun Qi; Runsheng Chen; Xing Wang Deng

This work examines the molecular basis of heterosis by comprehensively describing the epigenetic modifications and transcriptional output, including both mRNA and small RNAs, of two rice subspecies and their reciprocal hybrids. The behavior of transcriptomes and epigenomes in hybrids of heterotic parents is of fundamental interest. Here, we report highly integrated maps of the epigenome, mRNA, and small RNA transcriptomes of two rice (Oryza sativa) subspecies and their reciprocal hybrids. We found that gene activity was correlated with DNA methylation and both active and repressive histone modifications in transcribed regions. Differential epigenetic modifications correlated with changes in transcript levels among hybrids and parental lines. Distinct patterns in gene expression and epigenetic modifications in reciprocal hybrids were observed. Through analyses of single nucleotide polymorphisms from our sequence data, we observed a high correlation of allelic bias of epigenetic modifications or gene expression in reciprocal hybrids with their differences in the parental lines. The abundance of distinct small RNA size classes differed between the parents, and more small RNAs were downregulated than upregulated in the reciprocal hybrids. Together, our data reveal a comprehensive overview of transcriptional and epigenetic trends in heterotic rice crosses and provide a useful resource for the rice community.


Nucleic Acids Research | 2014

NONCODEv4: exploring the world of long non-coding RNA genes

Chaoyong Xie; Jiao Yuan; Hui Li; Ming Li; Guoguang Zhao; Dechao Bu; Weimin Zhu; Wei Wu; Runsheng Chen; Yi Zhao

NONCODE (http://www.bioinfo.org/noncode/) is an integrated knowledge database dedicated to non-coding RNAs (excluding tRNAs and rRNAs). Non-coding RNAs (ncRNAs) have been implied in diseases and identified to play important roles in various biological processes. Since NONCODE version 3.0 was released 2 years ago, discovery of novel ncRNAs has been promoted by high-throughput RNA sequencing (RNA-Seq). In this update of NONCODE, we expand the ncRNA data set by collection of newly identified ncRNAs from literature published in the last 2 years and integration of the latest version of RefSeq and Ensembl. Particularly, the number of long non-coding RNA (lncRNA) has increased sharply from 73 327 to 210 831. Owing to similar alternative splicing pattern to mRNAs, the concept of lncRNA genes was put forward to help systematic understanding of lncRNAs. The 56 018 and 46 475 lncRNA genes were generated from 95 135 and 67 628 lncRNAs for human and mouse, respectively. Additionally, we present expression profile of lncRNA genes by graphs based on public RNA-seq data for human and mouse, as well as predict functions of these lncRNA genes. The improvements brought to the database also include an incorporation of an ID conversion tool from RefSeq or Ensembl ID to NONCODE ID and a service of lncRNA identification. NONCODE is also accessible through http://www.noncode.org/.


Nucleic Acids Research | 2012

NONCODE v3.0: integrative annotation of long noncoding RNAs

Dechao Bu; Kuntao Yu; Silong Sun; Chaoyong Xie; Geir Skogerbø; Ruoyu Miao; Hui Xiao; Qi Liao; Haitao Luo; Guoguang Zhao; Haitao Zhao; Zhiyong Liu; Changning Liu; Runsheng Chen; Yi-Pei Zhao

Facilitated by the rapid progress of high-throughput sequencing technology, a large number of long noncoding RNAs (lncRNAs) have been identified in mammalian transcriptomes over the past few years. LncRNAs have been shown to play key roles in various biological processes such as imprinting control, circuitry controlling pluripotency and differentiation, immune responses and chromosome dynamics. Notably, a growing number of lncRNAs have been implicated in disease etiology. With the increasing number of published lncRNA studies, the experimental data on lncRNAs (e.g. expression profiles, molecular features and biological functions) have accumulated rapidly. In order to enable a systematic compilation and integration of this information, we have updated the NONCODE database (http://www.noncode.org) to version 3.0 to include the first integrated collection of expression and functional lncRNA data obtained from re-annotated microarray studies in a single database. NONCODE has a user-friendly interface with a variety of search or browse options, a local Genome Browser for visualization and a BLAST server for sequence-alignment search. In addition, NONCODE provides a platform for the ongoing collation of ncRNAs reported in the literature. All data in NONCODE are open to users, and can be downloaded through the website or obtained through the SOAP API and DAS services.


Nucleic Acids Research | 2013

Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts

Liang Sun; Haitao Luo; Dechao Bu; Guoguang Zhao; Kuntao Yu; Changhai Zhang; Yuanning Liu; Runsheng Chen; Yi Zhao

It is a challenge to classify protein-coding or non-coding transcripts, especially those re-constructed from high-throughput sequencing data of poorly annotated species. This study developed and evaluated a powerful signature tool, Coding-Non-Coding Index (CNCI), by profiling adjoining nucleotide triplets to effectively distinguish protein-coding and non-coding sequences independent of known annotations. CNCI is effective for classifying incomplete transcripts and sense–antisense pairs. The implementation of CNCI offered highly accurate classification of transcripts assembled from whole-transcriptome sequencing data in a cross-species manner, that demonstrated gene evolutionary divergence between vertebrates, and invertebrates, or between plants, and provided a long non-coding RNA catalog of orangutan. CNCI software is available at http://www.bioinfo.org/software/cnci.


web science | 2012

Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease.

Xiangfeng Lu; L. Wang; Shufeng Chen; Lin He; Xueli Yang; Yongyong Shi; Jing Cheng; Liang Zhang; C. Charles Gu; Jianfeng Huang; Tangchun Wu; Yitong Ma; Jianxin Li; Jie Cao; Jichun Chen; Dongliang Ge; Zhongjie Fan; Ying Li; Liancheng Zhao; Hongfan Li; Xiaoyang Zhou; Lanying Chen; Donghua Liu; Jingping Chen; Xiufang Duan; Yongchen Hao; Ligui Wang; Fanghong Lu; Zhendong Liu; Chong Shen

We performed a meta-analysis of 2 genome-wide association studies of coronary artery disease comprising 1,515 cases and 5,019 controls followed by replication studies in 15,460 cases and 11,472 controls, all of Chinese Han ancestry. We identify four new loci for coronary artery disease that reached the threshold of genome-wide significance (P < 5 × 10−8). These loci mapped in or near TTC32-WDR35, GUCY1A3, C6orf10-BTNL2 and ATP2B1. We also replicated four loci previously identified in European populations (in or near PHACTR1, TCF21, CDKN2A-CDKN2B and C12orf51). These findings provide new insights into pathways contributing to the susceptibility for coronary artery disease in the Chinese Han population.


Nucleic Acids Research | 2004

NONCODE: an integrated knowledge database of non-coding RNAs.

Changning Liu; Baoyan Bai; Geir Skogerbø; Lun Cai; Wei Deng; Yong Zhang; Dongbo Bu; Yi-Pei Zhao; Runsheng Chen

NONCODE is an integrated knowledge database dedicated to non-coding RNAs (ncRNAs), that is to say, RNAs that function without being translated into proteins. All ncRNAs in NONCODE were filtered automatically from literature and GenBank, and were later manually curated. The distinctive features of NONCODE are as follows: (i) the ncRNAs in NONCODE include almost all the types of ncRNAs, except transfer RNAs and ribosomal RNAs. (ii) All ncRNA sequences and their related information (e.g. function, cellular role, cellular location, chromosomal information, etc.) in NONCODE have been confirmed manually by consulting relevant literature: more than 80% of the entries are based on experimental data. (iii) Based on the cellular process and function, which a given ncRNA is involved in, we introduced a novel classification system, labeled process function class, to integrate existing classification systems. (iv) In addition, some 1100 ncRNAs have been grouped into nine other classes according to whether they are specific to gender or tissue or associated with tumors and diseases, etc. (v) NONCODE provides a user-friendly interface, a visualization platform and a convenient search option, allowing efficient recovery of sequence, regulatory elements in the flanking sequences, secondary structure, related publications and other information. The first release of NONCODE (v1.0) contains 5339 non-redundant sequences from 861 organisms, including eukaryotes, eubacteria, archaebacteria, virus and viroids. Access is free for all users through a web interface at http://noncode.bioinfo.org.cn.


Nucleic Acids Research | 2016

NONCODE 2016: an informative and valuable data source of long non-coding RNAs

Yi Zhao; Hui Li; Shuangsang Fang; Yue Kang; Wei Wu; Yajing Hao; Ziyang Li; Dechao Bu; Ninghui Sun; Michael Q. Zhang; Runsheng Chen

NONCODE (http://www.bioinfo.org/noncode/) is an interactive database that aims to present the most complete collection and annotation of non-coding RNAs, especially long non-coding RNAs (lncRNAs). The recently reduced cost of RNA sequencing has produced an explosion of newly identified data. Revolutionary third-generation sequencing methods have also contributed to more accurate annotations. Accumulative experimental data also provides more comprehensive knowledge of lncRNA functions. In this update, NONCODE has added six new species, bringing the total to 16 species altogether. The lncRNAs in NONCODE have increased from 210 831 to 527,336. For human and mouse, the lncRNA numbers are 167,150 and 130,558, respectively. NONCODE 2016 has also introduced three important new features: (i) conservation annotation; (ii) the relationships between lncRNAs and diseases; and (iii) an interface to choose high-quality datasets through predicted scores, literature support and long-read sequencing method support. NONCODE is also accessible through http://www.noncode.org/.


Cell Stem Cell | 2015

The Long Noncoding RNA lncTCF7 Promotes Self-Renewal of Human Liver Cancer Stem Cells through Activation of Wnt Signaling

Yanying Wang; Lei He; Ying Du; Pingping Zhu; Guanling Huang; Jianjun Luo; Xinlong Yan; Buqing Ye; Chong Li; Pengyan Xia; Geng Zhang; Yong Tian; Runsheng Chen; Zusen Fan

Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer, and it is characterized by a high rate of recurrence and heterogeneity. Liver cancer stem cells (CSCs) may well contribute to both of these pathological properties, but the mechanisms underlying their self-renewal and maintenance are poorly understood. Here, using transcriptome microarray analysis, we identified a long noncoding RNA (lncRNA) termed lncTCF7 that is highly expressed in HCC tumors and liver CSCs. LncTCF7 is required for liver CSC self-renewal and tumor propagation. Mechanistically, lncTCF7 recruits the SWI/SNF complex to the promoter of TCF7 to regulate its expression, leading to activation of Wnt signaling. Our data suggest that lncTCF7-mediated Wnt signaling primes liver CSC self-renewal and tumor propagation. In sum, therefore, we have identified an lncRNA-based Wnt signaling regulatory circuit that promotes tumorigenic activity in liver cancer stem cells, highlighting the role that lncRNAs can play in tumor growth and propagation.


Gut | 2014

LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma

Jiagen Li; Zhaoli Chen; Liqing Tian; Chengcheng Zhou; Max Yifan He; Yibo Gao; Suya Wang; Fang Zhou; Susheng Shi; Xiaoli Feng; Nan Sun; Ziyuan Liu; Geir Skogerboe; Jingsi Dong; Ran Yao; Yuda Zhao; Jian Sun; Baihua Zhang; Yue Yu; Xuejiao Shi; Mei Luo; Kang Shao; Ning Li; Bin Qiu; Fengwei Tan; Runsheng Chen; Jie He

Background Oesophageal cancer is one of the most deadly forms of cancer worldwide. Long non-coding RNAs (lncRNAs) are often found to have important regulatory roles. Objective To assess the lncRNA expression profile of oesophageal squamous cell carcinoma (OSCC) and identify prognosis-related lncRNAs. Method LncRNA expression profiles were studied by microarray in paired tumour and normal tissues from 119 patients with OSCC and validated by qRT-PCR. The 119 patients were divided randomly into training (n=60) and test (n=59) groups. A prognostic signature was developed from the training group using a random Forest supervised classification algorithm and a nearest shrunken centroid algorithm, then validated in a test group and further, in an independent cohort (n=60). The independence of the signature in survival prediction was evaluated by multivariable Cox regression analysis. Results LncRNAs showed significantly altered expression in OSCC tissues. From the training group, we identified a three-lncRNA signature (including the lncRNAs ENST00000435885.1, XLOC_013014 and ENST00000547963.1) which classified the patients into two groups with significantly different overall survival (median survival 19.2 months vs >60 months, p<0.0001). The signature was applied to the test group (median survival 21.5 months vs >60 months, p=0.0030) and independent cohort (median survival 25.8 months vs >48 months, p=0.0187) and showed similar prognostic values in both. Multivariable Cox regression analysis showed that the signature was an independent prognostic factor for patients with OSCC. Stratified analysis suggested that the signature was prognostic within clinical stages. Conclusions Our results suggest that the three-lncRNA signature is a new biomarker for the prognosis of patients with OSCC, enabling more accurate prediction of survival.

Collaboration


Dive into the Runsheng Chen's collaboration.

Top Co-Authors

Avatar

Geir Skogerbø

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaopeng Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianjun Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shunmin He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dongbo Bu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lunjiang Ling

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shiwei Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaowei Chen

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge