Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Runtao He is active.

Publication


Featured researches published by Runtao He.


Journal of Virology | 2004

Immunization with Modified Vaccinia Virus Ankara-Based Recombinant Vaccine against Severe Acute Respiratory Syndrome Is Associated with Enhanced Hepatitis in Ferrets

Hana Weingartl; Markus Czub; Stefanie Czub; James Neufeld; Peter Marszal; Jason Gren; Greg C. Smith; Shane Jones; Roxanne Proulx; Yvonne Deschambault; Elsie Grudeski; Anton Andonov; Runtao He; Yan Li; John Copps; Allen Grolla; Daryl Dick; Jody Berry; Shelley Ganske; Lisa Manning; Jingxin Cao

ABSTRACT Severe acute respiratory syndrome (SARS) caused by a newly identified coronavirus (SARS-CoV) is a serious emerging human infectious disease. In this report, we immunized ferrets (Mustela putorius furo) with recombinant modified vaccinia virus Ankara (rMVA) expressing the SARS-CoV spike (S) protein. Immunized ferrets developed a more rapid and vigorous neutralizing antibody response than control animals after challenge with SARS-CoV; however, they also exhibited strong inflammatory responses in liver tissue. Inflammation in control animals exposed to SARS-CoV was relatively mild. Thus, our data suggest that vaccination with rMVA expressing SARS-CoV S protein is associated with enhanced hepatitis.


Biochemical and Biophysical Research Communications | 2003

Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein

Runtao He; Andrew Leeson; Anton Andonov; Yan Li; Nathalie Bastien; Jingxin Cao; Carla Osiowy; Frederick Dobie; Todd Cutts; Melissa Ballantine; Xuguang Li

Abstract In March 2003, a novel coronavirus was isolated from patients exhibiting atypical pneumonia and subsequently proven to be the causative agent of the disease now referred to as severe acute respiratory syndrome (SARS). The complete genome of the SARS coronavirus (SARS-CoV) has since been sequenced. The SARS-CoV nucleocapsid (SARS-CoV N) shares little homology with other members of the coronavirus family. To determine if the N protein is involved in the regulation of cellular signal transduction, an ELISA-based assay on transcription factors was used. We found that the amount of transcription factors binding to promoter sequences of c-Fos, ATF2, CREB-1, and FosB was increased by the expression of SARS-CoV N. Since these factors are related to AP-1 signal transduction pathway, we investigated whether the AP-1 pathway was activated by SARS-CoV N protein using the PathDetect system. The results demonstrated that the expression of N protein, not the membrane protein (M), activated AP-1 pathway. We also found that SARS-CoV N protein does not activate NF-κB pathway, demonstrating that activation of important cellular pathways by SAS-CoV N protein is selective. Thus our data for the first time indicate that SARS-CoV has encoded a strategy to regulate cellular signaling process.


Vaccine | 2008

Universal antibodies and their applications to the quantitative determination of virtually all subtypes of the influenza A viral hemagglutinins

Stella Chun; Changgui Li; Gary Van Domselaar; Junzhi Wang; Aaron Farnsworth; Xiaoyu Cui; Harold Rode; Terry D. Cyr; Runtao He; Xuguang Li

The fusion peptide is the only universally conserved sequence in the hemagglutinins of all 16 subtypes of influenza A and two genetic lineages of influenza B viruses. Here, peptides selected by bioinformatics approach were modified and conjugated to overcome serious technical hurdles such as the high hydrophobicity and weak immunogenicity of the viral fusion peptides. Antibodies generated against fusion peptides demonstrated remarkable specificity against the viral sequences and robustness of quantitatively analyzing the viral hemagglutinins even under stringent conditions. As quantitatively revealed by antibody-binding experiments, the fusion peptides of diverse hemagglutinins are exposed to the same degree upon unfolding at neutral pH to the physiologically fusogenic state. To our knowledge, this is the first report on the quantitative determination of virtually all influenza vaccines using a single universal antibody.


Vaccine | 2005

Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets.

Markus Czub; Hana Weingartl; Stefanie Czub; Runtao He; Jingxin Cao

Abstract Severe acute respiratory syndrome (SARS) caused by a newly identified coronavirus (SARS-CoV) remains a threat to cause epidemics as evidenced by recent sporadic cases in China. In this communication, we evaluated the efficacy and safety of two SARS vaccine candidates based on the recombinant modified vaccinia Ankara (MVA) expressing SARS-CoV spike or nucleocapsid proteins in ferrets. No clinical signs were observed in all the ferrets challenged with SARS-CoV. On the other hand, vaccination did not prevent SARS-CoV infection in ferrets. In contrast, immunized ferrets (particularly those immunized with rMVA-spike) exhibited significantly stronger inflammatory responses and focal necrosis in liver tissue after SARS-CoV challenge than control animals. Thus, our data suggest that enhanced hepatitis is linked to vaccination with rMVA expressing SARS-CoV antigens.


Virus Research | 2004

Characterization Of Protein-protein Interactions Between The Nucleocapsid Protein And Membrane Protein Of The Sars Coronavirus.

Runtao He; Andrew Leeson; Melissa Ballantine; Anton Andonov; Lindsay Baker; Frederick Dobie; Yan Li; Nathalie Bastien; Heinz Feldmann; Ute Strocher; Steven Theriault; Todd Cutts; Jingxin Cao; Timothy F. Booth; Frank Plummer; Shaun Tyler; Xuguang Li

Abstract The human coronavirus, associated with severe acute respiratory syndrome (SARS-CoV), was identified and molecularly characterized in 2003. Sequence analysis of the virus indicates that there is only 20% amino acid (aa) identity with known coronaviruses. Previous studies indicate that protein–protein interactions amongst various coronavirus proteins are critical for viral assembly. Yet, little sequence homology between the newly identified SARS-CoV and those previously studied coronaviruses suggests that determination of protein–protein interaction and identification of amino acid sequences, responsible for such interaction in SARS-CoV, are necessary for the elucidation of the molecular mechanism of SARS-CoV replication and rationalization of anti-SARS therapeutic intervention. In this study, we employed mammalian two-hybrid system to investigate possible interactions between SARS-CoV nucleocapsid (N) and the membrane (M) proteins. We found that interaction of the N and M proteins takes place in vivo and identified that a stretch of amino acids (168–208) in the N protein may be critical for such protein–protein interactions. Importantly, the same region has been found to be required for multimerization of the N protein (He et al., 2004) suggesting this region may be crucial in maintaining correct conformation of the N protein for self-interaction and interaction with the M protein.


Vaccine | 2010

Qualitative and quantitative analyses of virtually all subtypes of influenza A and B viral neuraminidases using antibodies targeting the universally conserved sequences.

Caroline Gravel; Changgui Li; Junzhi Wang; Anwar M. Hashem; Bozena Jaentschke; Kangwei Xu; Barry Lorbetskie; Geneviève Gingras; Yves Aubin; Garry Van Domselaar; Michel Girard; Runtao He; Xuguang Li

Neuraminidase-induced immune responses are correlated with protection of humans and animals from influenza. However, the amounts of neuraminidase in influenza vaccines are yet to be standardized. Thus, a simple method capable of quantifying neuraminidase would be desirable. Here we identified two universally conserved sequences in all influenza A and B neuraminidases, one representing a novel finding of nearly 100% conservation near the enzymatically active site. Antibodies generated against the two highly conserved sequences bound to all nine subtypes of influenza A neuraminidase and demonstrated remarkable specificity against the viral neuraminidase sequences without any cross-reactivity with allantoic and cellular proteins. Importantly, employing these antibodies for the analyses of vaccines from eight manufacturers using the same vaccine seeds revealed marked variations of neuraminidase levels in addition to considerable differences between lots from the same producer. The reasons for the absence or low level of neuraminidase in vaccine preparations are complex and could be multi-factorial. The antibody-based assays reported here could be of practical value for better vaccine quality control.


Antiviral Research | 2013

Universal anti-neuraminidase antibody inhibiting all influenza A subtypes

Tracey M. Doyle; Anwar M. Hashem; Changgui Li; Gary Van Domselaar; Louise Larocque; Junzhi Wang; Daryl G.S. Smith; Terry D. Cyr; Aaron Farnsworth; Runtao He; Aeron C. Hurt; Earl G. Brown; Xuguang Li

The only universally conserved sequence amongst all influenza A viral neuraminidase (NA) is located between amino acids 222-230 and plays crucial roles in viral replication. However, it remained unclear as to whether this universal epitope is exposed during the course of infection to allow binding and inhibition by antibodies. Using a monoclonal antibody (MAb) targeting this specific epitope, we demonstrated that all nine subtypes of NA were inhibited in vitro by the MAb. Moreover, the antibody also provided heterosubtypic protection in mice challenged with lethal doses of mouse-adapted H1N1 and H3N2, which represent group I and II viruses, respectively. Furthermore, we report amino acid residues I222 and E227, located in close proximity to the active site, are indispensable for inhibition by this antibody. This unique, highly-conserved linear sequence in viral NA could be an attractive immunological target for protection against diverse strains of influenza viruses.


Biochemical and Biophysical Research Communications | 2004

Potent and selective inhibition of SARS coronavirus replication by aurintricarboxylic acid

Runtao He; Anton Adonov; Maya Traykova-Adonova; Jingxin Cao; Todd Cutts; Elsie Grudesky; Yvon Deschambaul; Jody D. Berry; Michael Drebot; Xuguang Li

Abstract The severe acute respiratory syndrome virus (SARS) is a coronavirus that instigated regional epidemics in Canada and several Asian countries in 2003. The newly identified SARS coronavirus (SARS-CoV) can be transmitted among humans and cause severe or even fatal illnesses. As preventive vaccine development takes years to complete and adverse reactions have been reported to some veterinary coronaviral vaccines, anti-viral compounds must be relentlessly pursued. In this study, we analyzed the effect of aurintricarboxylic acid (ATA) on SARS-CoV replication in cell culture, and found that ATA could drastically inhibit SARS-CoV replication, with viral production being 1000-fold less than that in the untreated control. Importantly, when compared with IFNs α and β, viral production was inhibited by more than 1000-fold as compared with the untreated control. In addition, when compared with IFNs α and β, ATA was approximately 10 times more potent than IFN α and 100 times more than interferon β at their highest concentrations reported in the literature previously. Our data indicated that ATA should be considered as a candidate anti-SARS compound for future clinical evaluation.


Biochemical and Biophysical Research Communications | 2010

Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus.

Anwar M. Hashem; Gary Van Domselaar; Changgui Li; Junzhi Wang; Yi-Min She; Terry D. Cyr; Jianhua Sui; Runtao He; Wayne A. Marasco; Xuguang Li

The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.


PLOS ONE | 2009

Aurintricarboxylic Acid Is a Potent Inhibitor of Influenza A and B Virus Neuraminidases

Anwar M. Hashem; Anathea S. Flaman; Aaron Farnsworth; Earl G. Brown; Gary Van Domselaar; Runtao He; Xuguang Li

Background Influenza viruses cause serious infections that can be prevented or treated using vaccines or antiviral agents, respectively. While vaccines are effective, they have a number of limitations, and influenza strains resistant to currently available anti-influenza drugs are increasingly isolated. This necessitates the exploration of novel anti-influenza therapies. Methodology/Principal Findings We investigated the potential of aurintricarboxylic acid (ATA), a potent inhibitor of nucleic acid processing enzymes, to protect Madin-Darby canine kidney cells from influenza infection. We found, by neutral red assay, that ATA was protective, and by RT-PCR and ELISA, respectively, confirmed that ATA reduced viral replication and release. Furthermore, while pre-treating cells with ATA failed to inhibit viral replication, pre-incubation of virus with ATA effectively reduced viral titers, suggesting that ATA may elicit its inhibitory effects by directly interacting with the virus. Electron microscopy revealed that ATA induced viral aggregation at the cell surface, prompting us to determine if ATA could inhibit neuraminidase. ATA was found to compromise the activities of virus-derived and recombinant neuraminidase. Moreover, an oseltamivir-resistant H1N1 strain with H274Y was also found to be sensitive to ATA. Finally, we observed additive protective value when infected cells were simultaneously treated with ATA and amantadine hydrochloride, an anti-influenza drug that inhibits M2-ion channels of influenza A virus. Conclusions/Significance Collectively, these data suggest that ATA is a potent anti-influenza agent by directly inhibiting the neuraminidase and could be a more effective antiviral compound when used in combination with amantadine hydrochloride.

Collaboration


Dive into the Runtao He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Van Domselaar

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Junzhi Wang

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Changgui Li

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Anwar M. Hashem

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jingxin Cao

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Andonov

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge