Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Runyu Yuan is active.

Publication


Featured researches published by Runyu Yuan.


Emerging Infectious Diseases | 2016

Novel Reassortant Avian Influenza A(H5N6) Viruses in Humans, Guangdong, China, 2015.

Yongyi Shen; Changwen Ke; Qian Li; Runyu Yuan; Dan Xiang; Weixin Jia; Yun-Di Yu; Lu Liu; Can Huang; Wenbao Qi; Reina Sikkema; Jie Wu; Marion Koopmans; Ming Liao

To the Editor: Avian influenza A(H5N6) influenza viruses have circulated among poultry in southern (Jiangxi, Guangdong) and western (Sichuan) provinces of China since 2013 (1,2). In 2014, outbreaks of H5N6 virus infection occurred among poultry in China, Laos, and Vietnam (1). In April 2014, the first case of highly pathogenic H5N6 infection among humans was detected in Sichuan Province (3); the second case was detected on December 3, 2014, in Guangdong Province (4). In December 2015, 4 humans in Guangdong Province were infected with H5N6 influenza (5,6).


Frontiers in Microbiology | 2016

Continuing Reassortant of H5N6 Subtype Highly Pathogenic Avian Influenza Virus in Guangdong.

Runyu Yuan; Zheng Wang; Yinfeng Kang; Jie Wu; Lirong Zou; Lijun Liang; Yingchao Song; Xin Zhang; Hanzhong Ni; Jinyan Lin; Changwen Ke

First identified in May 2014 in Chinas Sichuan Province, initial cases of H5N6 avian influenza virus (AIV) infection in humans raised great concerns about the viruss prevalence, origin, and development. To evaluate both AIV contamination in live poultry markets (LPMs) and the risk of AIV infection in humans, we have conducted surveillance of LPMs in Guangdong Province since 2013 as part of environmental sampling programs. With environmental samples associated with these LPMs, we performed genetic and phylogenetic analyses of 10 H5N6 AIVs isolated from different cities of Guangdong Province from different years. Results revealed that the H5N6 viruses were reassortants with hemagglutinin (HA) genes derived from clade 2.3.4.4 of H5-subtype AIV, yet neuraminidase (NA) genes derived from H6N6 AIV. Unlike the other seven H5N6 viruses isolated in first 7 months of 2014, all of which shared remarkable sequence similarity with the H5N1 AIV in all internal genes, the PB2 genes of GZ693, GZ670, and ZS558 more closely related to H6N6 AIV and the PB1 gene of GZ693 to the H3-subtype AIV. Phylogenetic analyses revealed that the environmental H5N6 AIV related closely to human H5N6 AIVs isolated in Guangdong. These results thus suggest that continued reassortment has enabled the emergence of a novel H5N6 virus in Guangdong, as well as highlight the potential risk of highly pathogenic H5N6 AIVs in the province.


Virology Journal | 2014

Phylogenetic relationships and pathogenicity variation of two Newcastle disease viruses isolated from domestic ducks in Southern China

Yinfeng Kang; Yanling Li; Runyu Yuan; Xianwei Li; Minhua Sun; Zhaoxiong Wang; Minsha Feng; Peirong Jiao; Tao Ren

BackgroundNewcastle disease (ND) is an OIE listed disease caused by virulent avian paramyxovirus type 1 (APMV-1) strains, which is enzootic and causes large economic losses in the poultry sector. Genotype VII and genotype IX NDV viruses were the predominant circulating genotype in China, which may possibly be responsible for disease outbreaks in chicken flocks in recent years. While ducks and geese usually have exhibited inapparent infections.MethodsIn the present study, we investigate the complete genome sequence, the clinicopathological characterization and transmission of two virulent Newcastle disease viruses, SS-10 and NH-10, isolated from domestic ducks in Southern China in 2010.ResultsF, and the complete gene sequences based on phylogenetic analysis demonstrated that SS-10 (genotype VII) and NH-10 (genotype IX) belongs to class II. The deduced amino acid sequence was (112)R-R-Q-K/R-R-F(117) at the fusion protein cleavage site. Animal experiment results showed that the SS-10 virus isolated from ducks was highly pathogenic for chickens and geese, but low pathogenic for ducks. It could be detected from spleen, lung, kidney, trachea, small intestine, bursa of fabricius, thymus, pancreas and cecal tonsils, oropharyngeal and cloacal swabs, and could transmit to the naive contact birds. Moreover, it could transmit to chickens, ducks and geese by naive contact. However, the NH-10 virus isolated from ducks could infect some chickens, ducks and geese, but only caused chickens to die. Additionally, it could transmit to the naive contact chickens, ducks, and geese.ConclusionThe two NDV isolates exhibited different biological properties with respect to pathogenicity and transmission in chickens, ducks and geese. Therefore, no species-preference exists for chicken, duck or goose viruses and more attention should be paid to the trans-species transmission of VII NDVs between ducks, geese and chickens for the control and eradication of ND.


Frontiers in Microbiology | 2016

Phylogenetic and Pathotypic Characterization of Newcastle Disease Viruses Circulating in South China and Transmission in Different Birds

Yinfeng Kang; Bin Xiang; Runyu Yuan; Xiaqiong Zhao; Minsha Feng; Pei Gao; Yanling Li; Yulian Li; Zhangyong Ning; Tao Ren

Although Newcastle disease virus (NDV) with high pathogenicity has frequently been isolated in poultry in China since 1948, the mode of its transmission among avian species remains largely unknown. Given that various wild bird species have been implicated as sources of transmission, in this study we genotypically and pathotypically characterized 23 NDV isolates collected from chickens, ducks, and pigeons in live bird markets (LBMs) in South China as part of an H7N9 surveillance program during December 2013–February 2014. To simulate the natural transmission of different kinds of animals in LBMs, we selected three representative NDVs—namely, GM, YF18, and GZ289—isolated from different birds to evaluate the pathogenicity and transmission of the indicated viruses in chickens, ducks, and pigeons. Furthermore, to investigate the replication and shedding of NDV in poultry, we inoculated the chickens, ducks, and pigeons with 106 EID50 of each virus via intraocular and intranasal routes. Eight hour after infection, the naïve contact groups were housed with those inoculated with each of the viruses as a means to monitor contact transmission. Our results indicated that genetically diverse viruses circulate in LBMs in South Chinas Guangdong Province and that NDV from different birds have different tissue tropisms and host ranges when transmitted in different birds. We therefore propose the continuous epidemiological surveillance of LBMs to support the prevention of the spread of these viruses in different birds, especially chickens, and highlight the need for studies of the virus–host relationship.


Frontiers in Microbiology | 2015

Host Innate Immune Responses of Ducks Infected with Newcastle Disease Viruses of Different Pathogenicities

Yinfeng Kang; Yanling Li; Runyu Yuan; Minsha Feng; Bin Xiang; Minhua Sun; Yaling Li; Peng Xie; Yangtong Tan; Tao Ren

Though previous studies have identified two strains of duck-origin Newcastle disease virus (NDV) with varying levels of pathogenicity, the relationship between the early-phase host innate immune response, and pathogenesis of ducks infected with these strains in the lungs and thymuses remains unclear. In this study, we compared the viral distribution and mRNA expression of immune-related genes in ducks following infection with two NDV strains, Duck/CH/GD/SS/10 (SS-10) and Duck/CH/GD/NH/10 (NH-10). Both NDV strains replicated systemically in tested tissues (i.e., small intestine, cecal tonsils, brain, lung, bursa of Fabricius, thymus, and spleen) and exhibited different biological properties in duck pathogenicity. Real-time quantitative polymerase chain reaction showed that the expression of TLR3, TLR7, RIG-I, MDA5, IL-1β, IL-2, IL-6, IL-8, IFN-alpha, IFN-beta, IFN-gamma in the lungs was significantly greater than in the respective thymus genes during the early post infection stage. However, in the lungs, the expression of TLR3, TLR7, IL-1β, IL-2, IL-8, IFN-alpha, IFN-gamma, and MHC II induced by SS-10 at 72 h post-inoculation (hpi) was less than with NH-10. Furthermore, the expression of IL-6 and IFN-beta in the lungs and thymuses following infection with SS-10 was greater than that with NH-10 at 24 and 48 hpi. These results highlight important differences in host innate immune responses, courses of infection, and pathogenesis following NDV infection. Further studies should work to expand understandings of the molecular mechanisms related to NDV infection.


Scientific Reports | 2017

Highly pathogenic H5N6 influenza A viruses recovered from wild birds in Guangdong, southern China, 2014–2015

Yinfeng Kang; Lu Liu; Minsha Feng; Runyu Yuan; Can Huang; Yangtong Tan; Pei Gao; Dan Xiang; Xiaqiong Zhao; Yanling Li; David M. Irwin; Yong-Yi Shen; Tao Ren

Since 2013, highly pathogenic (HP) H5N6 influenza A viruses (IAVs) have emerged in poultry in Asia, especially Southeast Asia. These viruses have also caused sporadic infections in humans within the same geographic areas. Active IAV surveillance in wild birds sampled in Guangdong province, China from August 2014 through February 2015 resulted in the recovery of three H5N6 IAVs. These H5N6 IAV isolates possess the basic amino acid motif at the HA1-HA2 cleavage site that is associated with highly pathogenic IAVs infecting chickens. Noteworthy findings include: (1) the HP H5N6 IAV isolates were recovered from three species of apparently healthy wild birds (most other isolates of HP H5N6 IAV in Asia are recovered from dead wild birds or fecal samples in the environment) and (2) these isolates were apparently the first recoveries of HP H5N6 IAV for two of the three species thus expanding the demonstrated natural host range for these lineages of virus. This investigation provides additional insight into the natural history of HP H5N6 IAVs and identifies the occurrence of non-lethal, HP H5N6 IAV infections in wild birds thereby demonstrating the value of active IAV surveillance in wild birds.


Frontiers in Microbiology | 2016

Reassortment of Avian Influenza A/H6N6 Viruses from Live Poultry Markets in Guangdong, China.

Runyu Yuan; Lirong Zou; Yinfeng Kang; Jie Wu; Xianqiao Zeng; Jing Lu; Lijun Liang; Yingchao Song; Xin Zhang; Hanzhong Ni; Jinyan Lin; Ming Liao; Changwen Ke

Since early 2013, H7N9-subtype avian influenza virus (AIV) has caused human infection in eastern China. To evaluate AIV contamination and the public risk of infection, we systematically implemented environmental sampling from live poultry markets in Guangdong Province. Through real-time polymerase chain reaction assays and next-generation sequencing, we generated full nucleotide sequences of all 10 H6N6 AIVs isolated during sampling. Focusing on sequence analyses of hemagglutinin genes of the 10 H6N6 AIVs revealed that the viruses were low pathogenic AIVs with the typical hemagglutinin cleavage site of P-Q-I-E-T-R-G. The hemagglutinin, neuraminidase, and nucleocapsid genes of nine AIVs were of ST2853-like (H6-subtype) lineage, ST192-like (N6-subtype) lineage, and HN573-like (H6-subtype) lineage, respectively; whereas the other five genes were of ST339-like (H6-subtype) lineage. However, the polymerase PB2 and nucleocapsid genes of one strain (HZ057) were of GS/GD-like (H5N1-subtype) and ST339-like lineages. Phylogenic analysis revealed that all eight genes of the 10 viruses belonged to Eurasian avian lineage. Altogether, the 10 AIVs were reassortants of different genetic groups of exchanges with the same virus subtype, thus illustrating the genetic diversity and complexity of H6N6-subtype AIVs in Guangdong Province.


Oncotarget | 2017

Newcastle disease virus-induced autophagy mediates antiapoptotic signaling responses in vitro and in vivo

Yinfeng Kang; Runyu Yuan; Bin Xiang; Xiaqiong Zhao; Pei Gao; Xu Dai; Ming Liao; Tao Ren

In this study, we investigated the role of autophagy and apoptosis in Newcastle disease virus (NDV)-infected chicken cells and tissues. NDV-infected and starvation-induced chick embryo fibroblasts (CEF) cells showed higher autophagosome formation than mock-infected CEF cells on transmission electron microscopy. The NDV-infected CEF cells showed enhanced conversion of microtubule-associated protein 1 light chain 3-I (LC3-I) to LC3-II and degradation of p62/SQSTM1. The diminished conversion of LC3-I to LC3-II and cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in ultraviolet-inactivated NDV-infected cells suggested that autophagosome formation was necessary for NDV replication. Inhibition of autophagy by chloroquine (CQ) enhanced apoptosis resulting in increased cleavage of caspase 3 and PARP and AnnexinV/propidium iodide staining. Autophagy induction by rapamycin resulted in upregulation of all autophagy-related genes except Beclin 1, anti-apoptosis factors, and proinflammatory cytokines in the NDV-infected spleen and lung tissues. Subsequently, decreased apoptosis was observed in NDV-infected spleens and lungs than mock-infected organs. The pan-caspase inhibitor ZVAD-FMK promoted conversion of LC3-I to LC3-II, the degradation of p62/SQSTM1, NDV replication and cell viability by inhibiting apoptosis. Our study demonstrates that apoptosis inhibition enhances autophagy and promoted cell survival and NDV replication.In this study, we investigated the role of autophagy and apoptosis in Newcastle disease virus (NDV)-infected chicken cells and tissues. NDV-infected and starvation-induced chick embryo fibroblasts (CEF) cells showed higher autophagosome formation than mock-infected CEF cells on transmission electron microscopy. The NDV-infected CEF cells showed enhanced conversion of microtubule-associated protein 1 light chain 3-I (LC3-I) to LC3-II and degradation of p62/SQSTM1. The diminished conversion of LC3-I to LC3-II and cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in ultraviolet-inactivated NDV-infected cells suggested that autophagosome formation was necessary for NDV replication. Inhibition of autophagy by chloroquine (CQ) enhanced apoptosis resulting in increased cleavage of caspase 3 and PARP and AnnexinV/propidium iodide staining. Autophagy induction by rapamycin resulted in upregulation of all autophagy-related genes except Beclin 1, anti-apoptosis factors, and proinflammatory cytokines in the NDV-infected spleen and lung tissues. Subsequently, decreased apoptosis was observed in NDV-infected spleens and lungs than mock-infected organs. The pan-caspase inhibitor ZVAD-FMK promoted conversion of LC3-I to LC3-II, the degradation of p62/SQSTM1, NDV replication and cell viability by inhibiting apoptosis. Our study demonstrates that apoptosis inhibition enhances autophagy and promoted cell survival and NDV replication.


Oncotarget | 2017

Transient activation of the PI3K/Akt pathway promotes Newcastle disease virus replication and enhances anti-apoptotic signaling responses

Yinfeng Kang; Runyu Yuan; Xiaqiong Zhao; Bin Xiang; Shimin Gao; Pei Gao; Xu Dai; Minsha Feng; Yanling Li; Peng Xie; Yulian Li; Xiaoyi Gao; Tao Ren

Viral infection activates a hosts cellular phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which is involved in cell differentiation, growth, survival, and apoptosis. To elucidate molecular mechanisms in the pathogenesis of Newcastle disease virus (NDV), we demonstrated that NDV transiently activates the PI3K/Akt pathway in chicken cells at an early phase of infection. Its activation was observed as early as 15 min post-infection and gradually weakened after 24 h. Incubating cells with a PI3K inhibitor, LY294002 or wortmannin, prior to NDV infection decreased NDV progeny yields and suppressed Akt phosphorylation at early times post-infection. Akt activation is triggered by NDV-GM or NDV-F48E9 and is abolished by methyl β-cyclodextrin and chlorpromazine. Treatment following NDV-La Sota infection had no obvious effect. However, inhibiting PI3K activation promoted apoptotic responses during an early stage of NDV infection. The pan caspase inhibitor ZVAD-FMK mitigated the reduction in Akt phosphorylation by inhibiting PI3K activation, which indicates the signaling pathway promotes cell survival and, in turn, facilitates viral replication. By suppressing premature apoptosis upon NDV infection, the PI3K/Akt pathway enhances the anti-apoptotic response.


Frontiers in Microbiology | 2017

Immune Responses of Chickens Infected with Wild Bird-Origin H5N6 Avian Influenza Virus

Shimin Gao; Yinfeng Kang; Runyu Yuan; Haili Ma; Bin Xiang; Zhaoxiong Wang; Xu Dai; Fumin Wang; Jiajie Xiao; Ming Liao; Tao Ren

Since April 2014, new infections of H5N6 avian influenza virus (AIV) in humans and domestic poultry have caused considerable economic losses in the poultry industry and posed an enormous threat to human health worldwide. In previous research using gene sequence and phylogenetic analysis, we reported that H5N6 AIV isolated in February 2015 (ZH283) in Pallas’s sandgrouse was highly similar to that isolated in a human in December 2015 (A/Guangdong/ZQ874/2015), whereas a virus (i.e., SW8) isolated in oriental magpie-robin in 2014 was highly similar to that of A/chicken/Dongguan/2690/2013 (H5N6). However, the pathogenicity, transmissibility, and host immune-related response of chickens infected by those wild bird-origin H5N6 AIVs remain unknown. In response, we examined the viral distribution and mRNA expression profiles of immune-related genes in chickens infected with both viruses. Results showed that the H5N6 AIVs were highly pathogenic to chickens and caused not only systemic infection in multiple tissues, but also 100% mortality within 3–5 days post-infection. Additionally, ZH283 efficiently replicated in all tested tissues and transmitted among chickens more rapidly than SW8. Moreover, quantitative real-time polymerase chain reaction analysis showed that following infection with H5N6, AIVs immune-related genes remained active in a tissue-dependent manner, as well as that ZH283 induced mRNA expression profiles such as TLR3, TLR7, IL-6, TNF-α, IL-1β, IL-10, IL-8, and MHC-II to a greater extent than SW8 in the tested tissues of infected chickens. Altogether, our findings help to illuminate the pathogenesis and immunologic mechanisms of H5N6 AIVs in chickens.

Collaboration


Dive into the Runyu Yuan's collaboration.

Top Co-Authors

Avatar

Yinfeng Kang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tao Ren

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bin Xiang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ming Liao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Minsha Feng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanling Li

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Changwen Ke

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jie Wu

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Pei Gao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaqiong Zhao

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge