Runzhi Zhu
Guangdong Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Runzhi Zhu.
The EMBO Journal | 2016
Wenxian Wu; Chunxia Lin; Keng Wu; Lei Jiang; Xiaojing Wang; Wen Li; Haixia Zhuang; Xingliang Zhang; Hao Chen; Shupeng Li; Yue Yang; Yue Lu; Jingjing Wang; Runzhi Zhu; Liangqing Zhang; Sen-Fang Sui; Ning Tan; Bin Zhao; Jingjing Zhang; Li L; Du Feng
In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER–mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells.
PLOS ONE | 2013
Shixing Wu; Bin Liu; Qingyu Zhang; Jie Liu; Wei Zhou; Chang Wang; Mingyi Li; Shiting Bao; Runzhi Zhu
Dihydromyricetin (DHM) is a major active ingredient of flavonoids compounds. It exhibited anticancer activity and induced apoptosis in human hepatocellular carcinoma HepG2 cells according to our previous data. In this study, we investigated whether p53 is involved in DHM-triggered viability inhibition and apoptosis induction in cancer cells. MTT [3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay was employed to evaluate the viability of HepG2 cells after DHM treatment. Meanwhile, p53 small interfering RNA (siRNA) was adopted to silence p53 expression. Protein level of p53 and Bax/Bcl-2 were evaluated by western blot analysis. Cell counting assay showed that DHM inhibited HepG2 cell growth effectively in a time- and dose-dependent manner. P53 expression was significantly increased after DHM treatment, whereas Bcl-2 was reduced potently. Furthermore, after co-treatment with Pifithrin-α (PFT-α, p53 inhibitor), Bcl-2 expression was reversed. The expression of Bax was no significant change, which was also observed after p53 silence. These findings defined and supported a novel function that DHM could induce human hepatocellular carcinoma HepG2 cells apoptosis by up-regulating Bax/Bcl-2 expression via p53 signal pathway.
World Journal of Gastroenterology | 2012
Hai-Li Huang; Ya-Jing Wang; Qingyu Zhang; Bin Liu; Fang-Yuan Wang; Jingjing Li; Runzhi Zhu
AIM To investigate the hepatoprotective effect of baicalein against carbon tetrachloride (CCl₄)-induced liver damage in mice. METHODS Mice were orally administered with baicalein after CCl₄ injection, and therapeutic baicalein was given twice a day for 4 d. The anti-inflammation effects of baicalein were assessed directly by hepatic histology and serum alanine aminotranferease and aspartate aminotransferase measurement. Proliferating cell nuclear antigen was used to evaluate the effect of baicalein in promoting hepatocyte proliferation. Serum interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) levels were measured by enzyme-linked immunosorbent assay and liver IL-6, TNF-α, transforming growth factor-α (TGF-α), hepatocyte growth factor (HGF) and epidermal growth factor (EGF) genes expression were determined by quantitative real-time polymerase chain reaction. RESULTS CCl₄-induced acute liver failure model offers a survival benefit in baicalein-treated mice. The data indicated that the mRNA levels of IL-6 and TNF-α significantly increased within 12 h after CCl₄ treatment in baicalein administration groups, but at 24, 48 and 72 h, the expression of IL-6 and TNF-α was kept at lower levels compared with the control. The expression of TGF-α, HGF and EGF was enhanced dramatically in baicalein administration group at 12, 24, 48 and 72 h. Furthermore, we found that baicalein significantly elevated the serum level of TNF-α and IL-6 at the early phase, which indicated that baicalein could facilitate the initiating events in liver regeneration. CONCLUSION Baicalein may be a therapeutic candidate for acute liver injury. Baicalein accelerates liver regeneration by regulating TNF-α and IL-6 mediated pathways.
Scientific Reports | 2015
Qingyu Zhang; Jie Liu; Bin Liu; Juan Xia; Nianping Chen; Xiaofeng Chen; Yi Cao; Chen Zhang; Caijie Lu; Mingyi Li; Runzhi Zhu
The development of antitumor chemotherapy drugs remains a key goal for oncologists, and natural products provide a vast resource for anti-cancer drug discovery. In the current study, we found that the flavonoid dihydromyricetin (DHM) exhibited antitumor activity against liver cancer cells, including primary cells obtained from hepatocellular carcinoma (HCC) patients. In contrast, DHM was not cytotoxic to immortalized normal liver cells. Furthermore, DHM treatment resulted in the growth inhibition and remission of xenotransplanted tumors in nude mice. Our results further demonstrated that this antitumor activity was caused by the activation of the p53-dependent apoptosis pathway via p53 phosphorylation at serine (15Ser). Moreover, our results showed that DHM plays a dual role in the induction of cell death when administered in combination with cisplatin, a common clinical drug that kills primary hepatoma cells but not normal liver cells.
Molecular Medicine Reports | 2014
Bin Liu; Zhongyou Zhou; Wei Zhou; Jie Liu; Qingyu Zhang; Juan Xia; Juntao Liu; Nianping Chen; Mingyi Li; Runzhi Zhu
The present study compared the effect of resveratrol on HCT116 and Caco-2 human colon cancer cells. Annexin V/propidium iodide staining, MTT assay and western blot analysis revealed that resveratrol induced cycle arrest in the two cell lines, which was evidenced by cell cycle analysis and changes in the expression of the cell cycle proteins cyclin-dependent kinase (CDK) 2, CDK4, cyclin D1, proliferating cell nuclear antigen and P21. Furthermore, resveratrol was found to have a strong apoptosis-inducing effect, which was evidenced through the high percentage of annexin V positive cells and high protein expression of cleaved-caspase-7, cleaved-caspase-9 and cleaved-poly(ADP-ribose) polymerase in the resveratrol-treated cancer cells. In conclusion, these results demonstrated that resveratrol had greater growth inhibitory and cell cycle arrest effects on Caco-2 cells than HCT116 cells, through caspase-dependent and cyclin-CDK pathways.
Scientific Reports | 2015
Bin Liu; Xiaoyu Tan; Jian Liang; Shixing Wu; Jie Liu; Qingyu Zhang; Runzhi Zhu
Reactive oxygen species (ROS) and cellular oxidant stress are considered inducers of carcinogenesis. However, the association of ROS with cancer is both complex and, at times, paradoxical. We assessed the effects of dihydromyricetin (DHM) on the induction of ROS accumulation and on the activation of the mitochondrial signaling pathway in human hepatoma HepG2 cells. The results indicated that DHM could reduce ROS accumulation in a concentration-dependent manner. Additionally, with increasing concentrations of DHM, the expression of proteins that participate in the cell apoptosis program increased in a concentration-dependent manner. Furthermore, we found that a low dose of H2O2 (10 nM) could reverse DHM-induced cell apoptosis. We observed the following critical issues: first, the cellular redox balance is vital in DHM-induced apoptosis of human hepatocellular carcinoma (HCC) cells, and second, ROS could function as a redox-active signaling messenger to determine DHM-induced cell apoptosis. In this study, we demonstrated that low levels of ROS are also critical for the function of HCC cells.
Food and Chemical Toxicology | 2014
Juan Xia; Shiwei Guo; Tao Fang; Du Feng; Xingli Zhang; Qingyu Zhang; Jie Liu; Bin Liu; Mingyi Li; Runzhi Zhu
Dihydromyricetin (DHM), a bioactive flavonoid compound extracted from the stems and leaves of Ampelopsis grossedentata, has oxidation resistance, anti-tumor and free radical scavenging capabilities. In this study, we found that DHM-induced autophagy inhibited the cell proliferation in HepG2 cells. The transmission electron microscopy results showed that DHM induced significantly autophagosome characteristics like autophagolysosome containing degraded cellular content. GFP labled LC3 plasma transfection showed that LC3 largely diffused to punctate structures with DHM treatment, while lysosomal-rich/acidic compartments detected using LysoTracker Red staining. In addition, DHM promoted the expressions of LC3-II and Beclin-1 in a dose- and time-dependent manner. Further study showed that DHM suppressed the activation of mTOR (mammalian targets of rapamycin) involved in regulating its upstream signaling pathways including extracellular signal-regulated kinase 1/2 (ERK1/2), AMPK (AMP-activated kinase) and class III phosphatidylinositol 3-kinase/phosphoinositide-dependent protein kinase 1/protein kinase B (PI3K/PDK 1/Akt) pathways. Taken together, all the results demonstrated that DHM-induced autophagy inhibited the cell proliferation in HepG2 cells, the possible mechanism involved in inhibition of mTOR activation and regulating the related upstream signaling pathways.
Molecular Medicine Reports | 2015
Long Yuan; Yongrong Zhang; Juan Xia; Bin Liu; Qingyu Zhang; Jie Liu; Liming Luo; Zhou Peng; Zeqing Song; Runzhi Zhu
Resveratrol, a non-flavone polyphenol compound, has a chemopreventive and chemotherapeutic effect against the progression of multiple types of cancer, including lung cancer. However, the molecular mechanism underlying the effects of resveratrol on cancer remain to be elucidated. In the present study, using an MTT assay, it was demonstrated that resveratrol inhibited cell proliferation in a concentration- and time-dependent manner. In addition, morphological features were observed in the A549, human lung cancer cell line, which included cell shrinkage, cells became distorted, certain cells became rounded and there was a concentration-dependent increase in the number of sloughed cells. Cell cycle analysis revealed that resveratrol may induce cell cycle arrest in the G0/G1 phase by downregulating the expression levels of cyclin D1, cyclin-dependent kinase (CDK)4 and CDK6, and upregulating the expression levels of the CDK inhibitors, p21 and p27. The immunofluorescence and western blot analysis results revealed that resveratrol upregulated the nuclear expression of p53 in A549 cells. Further studies have demonstrated that p53 downregulation did not contribute to the G0/G1 cell cycle arrest induced by resveratrol. In addition, resveratrol had no effect on the expression of p21, through use of the p53 inhibitor, pifithrin-α. The present study may offer a scientific basis for the further in-depth evaluation of resveratrol in the association of p53 and cell cycle arrest.
Oncology Reports | 2014
Guofang Zeng; Jie Liu; Hege Chen; Bin Liu; Qingyu Zhang; Mingyi Li; Runzhi Zhu
Dihydromyricetin (DHM) exhibits multiple pharmacological activities; however, the role of DHM in anti-melanoma activities and the underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on cell proliferation, cell cycle distribution and apoptosis in the human melanoma SK-MEL-28 cell line, and to explore the related mechanisms. The effect of DHM on cell proliferation was investigated by MTT assay, and cell cycle distribution was determined by flow cytometry. TUNEL assay was used to evaluate DHM-mediated apoptosis, and western blotting was applied to examine expression levels of p53, p21, Cdc25A, Cdc2, P-Cdc2, Bax, IKK-α, NF-κB p65, p38 and P-p38 proteins. The results revealed that DHM suppressed cell proliferation of SK-MEL-28 cells in a concentration- and time-dependent manner, and caused cell cycle arrest at the G1/S phase. DHM increased the production of p53 and p21 proteins and downregulated the production of Cdc25A, Cdc2 and P-Cdc2 proteins, which induced cell cycle arrest. Additionally, DHM significantly induced the apoptosis of SK-MEL-28 cells, and enhanced the expression levels of Bax proteins and decreased the protein levels of IKK-α, NF-κB (p65) and P-p38. The results suggest that DHM may be a novel and effective candidate agent to inhibit the growth of melanoma.
Oncology Letters | 2014
Jie Liu; Yang Shu; Qingyu Zhang; Bin Liu; Juan Xia; Mingning Qiu; Huilai Miao; Mingyi Li; Runzhi Zhu
Hepatocellular carcinoma (HCC) is a life-threatening disease that is known to exhibit a poor prognosis. Therefore, it is important to identify an effective drug therapy for the treatment of HCC. Dihydromyricetin (DHM) is a flavonoid compound, isolated from the classical Chinese herb Ampelopsis grossedentata, which exhibits multiple pharmacological activities, including anticancer effects. In this study, the anticancer effect of DHM was investigated in nine different types of HCC cell lines via cell proliferation and immunoassays, as well as apoptosis detection. Two immortalized normal human liver cell lines were utilized to determine hepatotoxicity. The results revealed that DHM significantly inhibited cell proliferation and induced cell apoptosis in the HCC cell lines. However, DHM exhibited no cytotoxicity to normal human hepatic cell lines. Furthermore, it was found that DHM induced cell apoptosis in a p53-dependent manner. DHM upregulated p53 expression, and the upregulation of p53 increased the levels of the cleaved caspase-3 protein, directly inducing cell apoptosis. These results indicate that DHM is a promising candidate for the treatment of HCC.