Ruo-Li Chen
Keele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruo-Li Chen.
Nature Medicine | 2013
Michalis Papadakis; Gina Hadley; Maria Xilouri; Lisa Hoyte; Simon Nagel; Margaret Mary McMenamin; Grigorios Tsaknakis; Suzanne M. Watt; Cynthia Wright Drakesmith; Ruo-Li Chen; Matthew J.A. Wood; Zonghang Zhao; Benedikt M. Kessler; Kostas Vekrellis; Alastair M. Buchan
Previous attempts to identify neuroprotective targets by studying the ischemic cascade and devising ways to suppress it have failed to translate to efficacious therapies for acute ischemic stroke. We hypothesized that studying the molecular determinants of endogenous neuroprotection in two well-established paradigms, the resistance of CA3 hippocampal neurons to global ischemia and the tolerance conferred by ischemic preconditioning (IPC), would reveal new neuroprotective targets. We found that the product of the tuberous sclerosis complex 1 gene (TSC1), hamartin, is selectively induced by ischemia in hippocampal CA3 neurons. In CA1 neurons, hamartin was unaffected by ischemia but was upregulated by IPC preceding ischemia, which protects the otherwise vulnerable CA1 cells. Suppression of hamartin expression with TSC1 shRNA viral vectors both in vitro and in vivo increased the vulnerability of neurons to cell death following oxygen glucose deprivation (OGD) and ischemia. In vivo, suppression of TSC1 expression increased locomotor activity and decreased habituation in a hippocampal-dependent task. Overexpression of hamartin increased resistance to OGD by inducing productive autophagy through an mTORC1-dependent mechanism.
Nature Reviews Neurology | 2010
Ruo-Li Chen; Joyce S. Balami; Margaret M. Esiri; Liang-Kung Chen; Alastair M. Buchan
Stroke mostly occurs in elderly people and patient outcomes after stroke are highly influenced by age. A better understanding of the causes of stroke in the elderly might have important practical implications not only for clinical management, but also for preventive strategies and future health-care policies. In this Review, we explore the evidence from both human and animal studies relating to the effect of old age—in terms of susceptibility, patient outcomes and response to treatment—on ischemic stroke. Several aging-related changes in the brain have been identified that are associated with an increase in vulnerability to ischemic stroke in the elderly. Furthermore, risk factor profiles for stroke and mechanisms of ischemic injury differ between young and elderly patients. Elderly patients with ischemic stroke often receive less-effective treatment and have poorer outcomes than younger individuals who develop this condition. Neuroprotective agents for ischemic stroke have been sought for decades but none has proved effective in humans. One contributing factor for this translational failure is that most preclinical studies have used young animals. Future research on ischemic stroke should consider age as a factor that influences stroke prevention and treatment, and should focus on the management of acute stroke in the elderly to reduce the incidence and improve outcomes in this vulnerable group.
Lancet Neurology | 2011
Joyce S. Balami; Ruo-Li Chen; Iris Q. Grunwald; Alastair M. Buchan
Complications after ischaemic stroke, including both neurological and medical complications, are a major cause of morbidity and mortality. Neurological complications, such as brain oedema or haemorrhagic transformation, occur earlier than do medical complications and can affect outcomes with potential serious short-term and long-term consequences. Some of these complications could be prevented or, when this is not possible, early detection and proper management could be effective in reducing the adverse effects. However, there is little evidence-based data to guide the management of these neurological complications. There is a clear need for improved surveillance and specific interventions for the prevention, early diagnosis, and proper management of neurological complications during the acute phase of stroke to reduce stroke morbidity and mortality.
Journal of Cerebral Blood Flow and Metabolism | 2011
Simon Nagel; Michalis Papadakis; Ruo-Li Chen; Lisa Hoyte; Keith J. Brooks; Daniel Gallichan; Nicola R. Sibson; Christopher W. Pugh; Alastair M. Buchan
Dimethyloxalylglycine (DMOG) is an inhibitor of prolyl-4-hydroxylase domain (PHD) enzymes that regulate the stability of hypoxia-inducible factor (HIF). We investigated the effect of DMOG on the outcome after permanent and transient middle cerebral artery occlusion (p/tMCAO) in the rat. Before and after pMCAO, rats were treated with 40 mg/kg, 200 mg/kg DMOG, or vehicle, and with 40 mg/kg or vehicle after tMCAO. Serial magnetic resonance imaging (MRI) was performed to assess infarct evolution and regional cerebral blood flow (rCBF). Both doses significantly reduced infarct volumes, but only 40 mg/kg improved the behavior after 24 hours of pMCAO. Animals receiving 40 mg/kg were more likely to maintain rCBF values above 30% from the contralateral hemisphere within 24 hours of pMCAO. DMOG after tMCAO significantly reduced the infarct volumes and improved behavior at 24 hours and 8 days and also improved the rCBF after 24 hours. A consistent and significant upregulation of both mRNA and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) was associated with the observed neuroprotection, although this was not consistently related to HIF-1α levels at 24 hours and 8 days. Thus, DMOG afforded neuroprotection both at 24 hours after pMCAO and at 24 hours and 8 days after tMCAO. This effect was associated with an increase of VEGF and eNOS and was mediated by improved rCBF after DMOG treatment.
Journal of Cerebral Blood Flow and Metabolism | 2010
Lisa Hoyte; Keith J. Brooks; Simon Nagel; Asim M. Akhtar; Ruo-Li Chen; Sylvie Mardiguian; Martina A. McAteer; Daniel C. Anthony; Robin P. Choudhury; Alastair M. Buchan; Nicola R. Sibson
The pathogenesis of stroke is multifactorial, and inflammation is thought to have a critical function in lesion progression at early time points. Detection of inflammatory processes associated with cerebral ischemia would be greatly beneficial in both designing individual therapeutic strategies and monitoring outcome. We have recently developed a new approach to imaging components of the inflammatory response, namely endovascular adhesion molecule expression on the brain endothelium. In this study, we show specific imaging of vascular cell adhesion molecule (VCAM)-1 expression in a mouse model of middle cerebral artery occlusion (MCAO), and a reduction in this inflammatory response, associated with improved behavioral outcome, as a result of preconditioning. The spatial extent of VCAM-1 expression is considerably greater than the detectable lesion using diffusion-weighted imaging (25% versus 3% total brain volume), which is generally taken to reflect the core of the lesion at early time points. Thus, VCAM-1 imaging seems to reveal both core and penumbral regions, and our data implicate VCAM-1 upregulation and associated inflammatory processes in the progression of penumbral tissue to infarction. Our findings indicate that such molecular magnetic resonance imaging (MRI) approaches could be important clinical tools for patient evaluation, acute monitoring of therapy, and design of specific treatment strategies.
The Journal of Physiology | 2011
Brad A. Sutherland; Michalis Papadakis; Ruo-Li Chen; Alastair M. Buchan
Abstract The best neuroprotectant for acute ischaemic stroke would always be the rapid return of oxygen and glucose to physiological levels. This is currently provided by thrombolysis which restores blood flow to the ischaemic region. The attempt to confer neuroprotection by targeting the brain parenchyma has shown promise in experimental stroke models, but has unequivocally failed to translate to the clinic. Neuroprotective therapy primarily targets the biochemical cascade that produces cell death following cerebral ischaemia. However, these agents may also alter signal transduction that controls cerebral blood flow, for example glutamate, which may affect the outcome after ischaemia. In these cases, neuroprotection may potentially be due to the improved access to oxygen and glucose rather than biochemical prevention of cell death. Improvement in cerebral blood flow is an important but often overlooked effect of neuroprotective therapy, analogous to the protective effects of drug‐induced hypothermia. This short review will discuss cerebral blood flow alteration and protection of the brain in the context of ischaemic preconditioning, oxygen sensing and thrombolysis. Future neuroprotection studies in cerebral ischaemia require stringent monitoring of cerebral blood flow, plus other physiological parameters. This will increase the chances that any protection observed may be able to translate to human therapy.
International Journal of Geriatric Psychiatry | 2012
Ruoling Chen; Ying Liang Ma; Kenneth Wilson; Zhi Hu; David Sallah; Jiaji Wang; Lihua Fan; Ruo-Li Chen; J. R. M. Copeland
Previous studies indicated overall relatively low prevalence of dementia in older people in China, which may be biased by studied samples or methods. We determined the prevalence of dementia cases and subcases in China and examined their socio‐economic correlates.
The Journal of Physiology | 2012
Ruo-Li Chen; Simon Nagel; Michalis Papadakis; Tammie Bishop; Patrick J. Pollard; Peter J. Ratcliffe; Christopher W. Pugh; Alastair M. Buchan
• Cerebral ischaemia results in the activation of multiple pathways that can independently lead to neuronal death. Agents targeting a number of processes at one time are likely to be translated into stroke therapy. • Hypoxia‐inducible factor (HIF) is a transcription complex which responds to changes in oxygen. HIF levels are tightly regulated by a group of prolyl hydroxylases (PHDs). • In this study, we investigated the function of each of the HIF‐PHDs in the first 24 hours following transient focal cerebral ischaemia by using mice with each isoform genetically suppressed. • We found that the PHD1−/−, PHD2+/−, PHD3−/− mice had different outcomes after inducing ischaemia. In particular, the PHD2+/− mice had an improved rCBF response post‐reperfusion with better behavioural scores. The PHD3−/− mice have worse rCBF but no behavioural change. • The information gained enhances understanding of the biological processes involved and informs strategies for therapeutic targeting of the PHD enzymes.
Journal of Neurochemistry | 2014
Ruo-Li Chen; Omolara O. Ogunshola; Kar Kheng Yeoh; Anant Jani; Michalis Papadakis; Simon Nagel; Christopher J. Schofield; Alastair M. Buchan
This study investigated the effects of 2‐(1‐chloro‐4‐hydroxyisoquinoline‐3‐carboxamido) acetic acid (IOX3), a selective small molecule inhibitor of hypoxia‐inducible factor (HIF) prolyl hydroxylases, on mouse brains subject to transient focal cerebral ischaemia. Male, 8‐ to 12‐week‐old C57/B6 mice were subjected to 45 min of middle cerebral artery occlusion (MCAO) either immediately or 24 h after receiving IOX3. Mice receiving IOX3 at 20 mg/kg 24 h prior to the MCAO had better neuroscores and smaller blood–brain barrier (BBB) disruption and infarct volumes than mice receiving the vehicle, whereas those having IOX3 at 60 mg/kg showed no significant changes. IOX3 treatment immediately before MCAO was not neuroprotective. IOX3 up‐regulated HIF‐1α, and increased EPO expression in mouse brains. In an in vitro BBB model (RBE4 cell line), IOX3 up‐regulated HIF‐1α and delocalized ZO‐1. Pre‐treating IOX3 on RBE4 cells 24 h before oxygen–glucose deprivation had a protective effect on endothelial barrier preservation with ZO‐1 being better localized, while immediate IOX3 treatment did not. Our study suggests that HIF stabilization with IOX3 before cerebral ischaemia is neuroprotective partially because of BBB protection, while immediate application could be detrimental. These results provide information for studies aimed at the therapeutic activation of HIF pathway for neurovascular protection from cerebral ischaemia.
Brain Research | 2007
Nouhad Kassem; Rashid Deane; Malcolm B. Segal; Ruo-Li Chen; Jane E. Preston
This study investigated the transfer of T4 from cerebrospinal fluid (CSF) into the choroid plexuses (CP) and ventricular brain regions, and the role of P-glycoprotein (P-gp), multidrug resistance protein 1 (mrp1) and organic anion transporting polypeptides (oatps). During in vivo ventriculo-cisternal (V-C) perfusion in the anesthetized rabbit (meditomidine hydrochloride 0.5 mg kg(-1), pentobarbitone 10 mg kg(-1) i.v.), 125I-T4 was perfused continuously into ventricular CSF with reference molecules 14C-mannitol and blue dextran. Over 2 h, 36.9+/-4.6% 125I-T4 was recovered in cisternal CSF. Addition of P-gp substrate verapamil increased CSF 125I-T4 recovery to 51.4+/-2.8%, although mrp1 and oatp substrates had no significant effect. In brain, 125I-T4 showed greatest accumulation in the CP (1.52+/-0.31 ml g(-1)), followed by ventricular regions (caudate putamen, ependyma, hippocampus, 0.05-0.14 ml g(-1)). At the CP, verapamil and probenecid (but not indomethacin) significantly increased 125I-T4 accumulation, implicating a role for P-gp and oatps. Of other brain regions, all three drugs increased accumulation in caudate putamen 3-5 times, and indomethacin and probenecid increased accumulation in ependyma 4-5 times. The role of P-gp was investigated further in isolated incubated CPs using 5 microg/ml C219 anti-P-gp antibody. Both 125I-T4 and 3H-cyclosporin accumulation increased by 80%, suggesting that P-gp is functional in the CP and has a role in removal of T4. Combined with the in vivo results, these studies suggest that P-gp provides a local homeostatic mechanism, maintaining CSF T4 levels. We conclude that P-gp and oatps contribute to the transfer of 125I-T4 between the CSF, CP and brain, hence regulating 125I-T4 availability in CSF.