Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruoh-Chyu Ruaan is active.

Publication


Featured researches published by Ruoh-Chyu Ruaan.


Langmuir | 2008

A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion.

Yung Chang; Shih-Chieh Liao; Akon Higuchi; Ruoh-Chyu Ruaan; Chih-Wei Chu; Wen-Yih Chen

An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems. In this study we demonstrate the performance and stability of an antifouling surface with grafted zwitterionic sulfobetaine methacrylate (SBMA). The SBMA was grafted from a bromide-covered gold surface via surface-initiated atom transfer radical polymerization to form well-packed polymer brushes. Plasma protein adsorption on poly(sulfobetaine methacrylate) (polySBMA) grafted surfaces was measured with a surface plasmon resonance sensor. It is revealed that an excellent stable nonbiofouling surface with grafted polySBMA can be performed with a cycling test of the adsorption of three model proteins in a wide range of various salt types, buffer compositions, solution pH levels, and temperatures. This work also demonstrates the adsorption of plasma proteins and the adhesion of platelets from human blood plasma on the polySBMA grafted surface. It was found that the polySBMA grafted surface effectively reduces the plasma protein adsorption from platelet-poor plasma solution to a level superior to that of adsorption on a surface terminated with tetra(ethylene glycol). The adhesion and activation of platelets from platelet-rich plasma solution were not observed on the polySBMA grafted surface. This work further concludes that a surface with good hemocompatibility can be achieved by the well-packed surface-grafted polySBMA brushes.


Langmuir | 2010

Hemocompatible Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling

Yung Chang; Shih-Hung Shu; Yu-Ju Shih; Chih-Wei Chu; Ruoh-Chyu Ruaan; Wen-Yih Chen

In this work, the hemocompatibility of a sulfobetaine-like copolymer brush resulting from a mixed-charge copolymerization of the positively charged 11-mercapto-N,N,N-trimethylammonium chloride (TMA) and negatively charged 11-mercaptoundecylsulfonic acid (SA) was studied. Mixed charge distribution in the prepared poly(TMA-co-SA) copolymer brushes was controlled by the regulation of the reaction rate of the surface-initiated atom transfer radical polymerization (ATRP). The adsorption behavior of plasma proteins on a surface grafted with poly(TMA-co-SA) was measured by a surface plasmon resonance (SPR) sensor. The effects of varying temperature, solution pH, and ionic strength on the antifouling characteristics of the mixed-charge copolymer brushes were systematically evaluated, and the protein-fouling resistance was discussed in detail, especially with respect to the effect of ionic strength on the intra- and intermolecular interactions of the poly(TMA-co-SA) with proteins. The adhesion and activation of blood cells on the poly(TMA-co-SA)-grafted surface in contact with human whole blood was also demonstrated. The results suggest that mixed-charge copolymer brushes of poly(TMA-co-SA), which, like zwitterionic homopolymer brushes, have overall charge neutrality, can be used in similar applications for protein-fouling resistance and have excellent hemocompatibility with human whole blood at physiologic temperatures.


Biomacromolecules | 2009

Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly(N-isopropyl acrylamide)

Yung Chang; Wen-Yih Chen; Wetra Yandi; Yu-Ju Shih; Wan-Ling Chu; Ying-Ling Liu; Chih-Wei Chu; Ruoh-Chyu Ruaan; Akon Higuchi

Thermoresponsive statistical copolymers of zwitterionic sulfobetaine methacrylate (SBMA) and nonionic N-isopropylacrylamide (NIPAAm) were prepared with an average molecular weight of about 6.0 kDa via homogeneous free radical copolymerization. The aqueous solution properties of poly(SBMA-co-NIPAAm) were measured using a UV--visible spectrophotometer. The copolymers exhibited controllable lower and upper critical solution temperatures in aqueous solution and showed stimuli-responsive phase transition in the presence of salts. Regulated zwitterionic and nonionic molar mass ratios led to poly(SBMA-co-NIPAAm) copolymers having double-critical solution temperatures, where the water-insoluble polymer microdomains are generated by the zwitterionic copolymer region of polySBMA or nonionic copolymer region of polyNIPAAm depending on temperature. A high content of the nonionic polyNIPAAm in poly(SBMA-co-NIPAAm) exhibits nonionic aggregation at high temperatures due to the desolvation of polyNIPAAm, whereas relatively low content of polyNIPAAm in poly(SBMA-co-NIPAAm) exhibits zwitterionic aggregation at low temperatures due to the desolvation of polySBMA. Plasma protein adsorption on the surface coated with poly(SBMA-co-NIPAAm) was measured with a surface plasmon resonance (SPR) sensor. The copolymers containing polySBMA above 29 mol % showed extremely low protein adsorption and high anticoagulant activity in human blood plasma. The tunable and switchable thermoresponsive phase behavior of poly(SBMA-co-NIPAAm), as well as its high plasma protein adsorption resistance and anticoagulant activity, suggests a potential for blood-contacting applications.


Journal of Chromatography A | 2000

Microcalorimetric studies of interactions between proteins and hydrophobic ligands in hydrophobic interaction chromatography: effects of ligand chain length, density and the amount of bound protein.

Fu-Yung Lin; Wen-Yih Chen; Ruoh-Chyu Ruaan; Hsiang-Ming Huang

Using isothermal titration calorimetry (ITC), this investigation directly measured the adsorption enthalpies of proteins on various hydrophobic adsorbents. Various amounts of butyl and octyl groups were attached onto CM-Sepharose to form C4 and C8, two types of hydrophobic adsorbents. The adsorption enthalpies of both trypsinogen and alpha-chymotrypsinogen A were measured at 4.0 M NaCl and pH 10.0, in which most ionic interaction was suppressed. The adsorption isotherms of both proteins on various adsorbents were also measured, thus allowing us to calculate the Gibbs free energy and entropy of adsorption. Experimental results indicated that the adsorption of both proteins on butyl-containing adsorbents was exothermic, while their adsorption on octyl ones was endothermic. In addition, binding of both proteins with the butyl ligand is basically an adsorption process, while binding with the octyl ligand is adsorption and partition processes. Moreover, on both butyl or octyl, the adsorption enthalpy became increasingly positive as the ligand density increased, while the adsorption entropy became more positive as the alkyl chain length or density of the adsorbent increased. In addition, ITC was used to measure protein-protein interaction. The adsorption enthalpy of both proteins increased as the amount of bound protein increased, and the enthalpy increase of trypsinogen appeared to be higher than that of alpha-chymotrypsinogen A. This observation implies that protein-protein repulsion was stronger among trypsinogen molecules in the experiments.


Langmuir | 2012

Biofouling resistance of ultrafiltration membranes controlled by surface self-assembled coating with PEGylated copolymers.

Yen-Che Chiag; Yung Chang; Wen-Yih Chen; Ruoh-Chyu Ruaan

Block and random PEGylated copolymers of poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) were synthesized with a controlled polydispersity using an atom transfer radical polymerization method and varying molar mass ratios of PS/PEGMA. Two types of PEGylated copolymers were self-assembly coated onto the surface of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes for enhancing biofouling resistance. It was found that the adsorption capacities of random copolymers on PVDF membranes were all higher than those of block copolymers. However, the specific and overall protein resistance of bovine serum albumin (BSA) on PVDF membranes coated with block copolymers was much higher than that with random copolymers. The increase in styrene content in copolymer increased the amount of polymer coating on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be close to 2 for the best resistance of protein adsorption and bacterial adhesion on the PEGylated diblock copolymer-coated membranes. The PVDF membrane coated with such a copolymer owned excellent biofouling resistance to BSA, humic acid, negatively surface charged bacteria E. coli, and positively surface charged bacteria S. maltophilia.


Analytical Chemistry | 2008

Preparation of a DNA Aptamer−Pt Complex and Its Use in the Colorimetric Sensing of Thrombin and Anti-Thrombin Antibodies

Akon Higuchi; Yi-Di Siao; Siou-Ting Yang; Pei-Vin Hsieh; Hisashi Fukushima; Yung Chang; Ruoh-Chyu Ruaan; Wen-Yih Chen

DNA aptamers carrying Pt nanoparticles were prepared by the reaction of DNA aptamers (without functionalization with biotin, thiol, or other reactive groups) with K 2[PtCl 4] in solution at 60-90 degrees C. The DNA-Pt complexes possessed peroxidase enzymatic activity while retaining the specific binding ability of the aptamers. The enzymatic reaction of these complexes obeyed Michaelis-Menten kinetics. K M for the DNA-Pt complex was found to be on the same order as K M for hemin and hemin-DNA complex but 1 or 2 orders of magnitude higher than that of horseradish peroxidase. The rate of the reaction catalyzed by the DNA-Pt complex, k cat, was found to be on the same order as that of hemin and hemin-DNA complex but 2 or 3 orders of magnitude lower than that of horseradish peroxidase. Two types of DNAzyme-linked aptamer assays (DLAAs) were developed using these complexes, which successfully detected target proteins, with the sandwich type of DLAA targeting thrombin and the competitive type of DLAA targeting anti-thrombin IgA/G/M in serum. The DNA-Pt complexes retained their peroxidase enzymatic activity even after heat treatment. DLAAs having high thermal stability were developed using these complexes, which were free of animal and plant matter because neither antibodies nor horseradish peroxidase were used in their synthesis.


Materials Science and Engineering: C | 2014

Electrical stimulation to promote osteogenesis using conductive polypyrrole films

Wei-Wen Hu; Yi-Ting Hsu; Yu-Che Cheng; Chuan Li; Ruoh-Chyu Ruaan; Chih-Cheng Chien; Chih-Ang Chung; Chia-Wen Tsao

In this study, we developed an electrical cell culture and monitoring device. Polypyrrole (PPy) films with different resistances were fabricated as conductive surfaces to investigate the effect of substrate-mediated electrical stimulation. The physical and chemical properties of the devices, as well as their biocompatibilities, were thoroughly evaluated. These PPy films had a dark but transparent appearance, on which the surface cells could be easily observed. After treating with the osteogenic medium, rat bone marrow stromal cells cultured on the PPy films differentiated into osteoblasts. The cells grown on the PPy films had up-regulated osteogenic markers, and an alkaline phosphatase activity assay showed that the PPy films accelerated cell differentiation. Alizarin red staining and calcium analysis suggested that the PPy films promoted osteogenesis. Finally, PPy films were subjected to a constant electric field to elucidate the effect of electrical stimulation on osteogenesis. Compared with the untreated group, electrical stimulation improved calcium deposition in the extracellular matrix. Furthermore, PPy films with lower resistances allowed larger currents to stimulate the surface cells, which resulted in higher levels of mineralization. Overall, these results indicated that this system exhibited superior electroactivity with controllable electrical resistance and that it can be coated directly to produce medical devices with a transparent appearance, which should be beneficial for research on electrical stimulation for tissue regeneration.


European Polymer Journal | 2000

Microphase separated structure and protein adsorption of polyurethanes with butadiene soft segment

Shih-Liang Huang; Min-Shiun Chao; Ruoh-Chyu Ruaan; Juin-Yih Lai

Abstract Membranes of hydroxyl-terminated polybutadiene-based polyurethanes (PUs) were prepared with different types of diisocyanates, hard segment contents and thickness. Three effects on the molar adsorption ratio of fibrinogen to albumin (F/A molar ratio) of polymer surface were under investigation: the deviation of surface from overall composition, the aggregation of hard segments (i.e. phase separation) and membrane thickness. The former two effects were contributed by different membrane thickness. Surface composition was quantified by the absorbance ratio of carbonyl group to butadiene group (CO/CC ratio) on FTIR–ATR spectra. While phase separation is expressed by hydrogen bonding index, which is the relative absorbance of the hydrogen bonded carbonyl peak to that of free hydrogen bonded carbonyl peak. We found that a suitable phase separation or surface composition on these PU polymer surface possess the lowest F/A molar ratio.


ACS Applied Materials & Interfaces | 2014

Bacterial Resistance Control on Mineral Surfaces of Hydroxyapatite and Human Teeth via Surface Charge-Driven Antifouling Coatings

Antoine Venault; Hui-Shan Yang; Yen-Che Chiang; Bor-Shuinn Lee; Ruoh-Chyu Ruaan; Yung Chang

This works reports a set of new functionalized polyethyleneimine (PEI) polymers, including a neutral PEGylated polymer PEI-g-PEGMA, a negatively charged polymer PEI-g-SA, and a zwitterionic polymer PEI-g-SBMA, and their use as antibiofouling coating agent for human teeth protection. Polymers were synthesized by Michael addition, XPS analysis revealed that each polymer could be efficiently coated onto hydroxyapatite, ceramic material used as a model tooth. Polymers carrying a negative net charge were more efficiently adsorbed, because of the establishment of electrostatic interactions with calcium ions. Protein adsorption tests revealed that two factors were important in the reduction of protein adsorption. Both the surface charge and the surface ability to bind and entrap water molecules had to be considered. PEI-g-SBMA, which zeta potential in PBS solution was negative, was efficient to inhibit the adsorption of BSA, a negative protein. On the other hand, it also resisted the adsorption of lysozyme, a positive protein, because zwitterionic molecules can easily entrap water and provide a very hydrophilic environment. Streptococcus mutans attachment tests performed unveiled that all modified polymers were efficient to resist this type of bacteria responsible for dental carries. Best results were also obtained with PEI-g-SBMA coating. This polymer was also shown to efficiently resist the adsorption of positively charged bacteria (Stenotrophomonas maltophilia). Tests performed on real human tooth showed that PEI-g-SBMA could inhibit up to 70% of bacteria adhesion, which constitutes a major result considering that surface of teeth is very rough, therefore physically promoting the attachment of proteins and bacteria.


Journal of Biomedical Materials Research Part A | 2009

A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces

Yung Chang; Wan-Ling Chu; Wen-Yih Chen; Jie Zheng; Lingyun Liu; Ruoh-Chyu Ruaan; Akon Higuchi

A well-controlled biocompatible nonfouling surface is significant for biomedical requirements, especially for the improvement of biocompatibility. We demonstrate the low or nonbiofouling surfaces by coating hydrophobic-hydrophilic triblock copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) on the CH(3)-terminated self-assembled monolayer (SAM). Two types of copolymers are used to modify the surface, one with different PEO/PPO ratios ( approximately 20/80, 40/60, and 80/20, w/w) but the same PPO molecular weight ( approximately 2 k), the other with different copolymer MWs ( approximately 9, 11, and 15 k) but the same PEO/PPO ratio (80/20, w/w). In situ surface plasmon resonance (SPR) sensor is used to evaluate polymer adsorption on the SAMs and subsequent protein adsorption on the copolymer-treated surface. The effects of PEO-PPO-PEO molecular weight, PPO-to-PEO ratio, and ionic strength on protein adsorption from single protein solutions of fibrinogen, BSA, and complex mixed proteins are systematically investigated. A Pluronic F108 treated surface is highly resistant to nonspecific protein adsorption under the optimized conditions (MW of 15 k and PEO/PPO ratio of 80/20). This work demonstrates that the PEO-PPO-PEO polymer is able to achieve ultra low fouling surface via surface modification by controlling surface packing density of polymers (molecular weight, hydrophobic/hydrophilic ratio, and hydrophilic group coverage).

Collaboration


Dive into the Ruoh-Chyu Ruaan's collaboration.

Top Co-Authors

Avatar

Juin-Yih Lai

Chung Yuan Christian University

View shared research outputs
Top Co-Authors

Avatar

Wen-Yih Chen

National Central University

View shared research outputs
Top Co-Authors

Avatar

Yung Chang

Chung Yuan Christian University

View shared research outputs
Top Co-Authors

Avatar

Akon Higuchi

National Central University

View shared research outputs
Top Co-Authors

Avatar

Ching-Wei Tsai

National Central University

View shared research outputs
Top Co-Authors

Avatar

Da-Ming Wang

Chung Yuan Christian University

View shared research outputs
Top Co-Authors

Avatar

Chien-Chieh Hu

Chung Yuan Christian University

View shared research outputs
Top Co-Authors

Avatar

Wei-Wen Hu

National Central University

View shared research outputs
Top Co-Authors

Avatar

Chih-Cheng Chien

National Central University

View shared research outputs
Top Co-Authors

Avatar

Kueir-Rarn Lee

Chung Yuan Christian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge