Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruokun Yi is active.

Publication


Featured researches published by Ruokun Yi.


Journal of Food Science and Nutrition | 2015

Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice.

Ruokun Yi; Jia-Le Song; Yaung-Iee Lim; Yong-Kyu Kim; Kun-Young Park

This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in mice administered APAP (P<0.05). TMC (500 mg/kg BW) reduced hepatic mRNA levels of TNF-α, IL-1β, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (P<0.05). Furthermore, histological observations suggested TMC pretreatment dose-dependently prevented APAP-induced hepatocyte damage. These results suggest that TMC could be used as a functional health drink to prevent hepatic damage.


Molecules | 2018

Lactobacillus casei Strain Shirota Enhances the In Vitro Antiproliferative Effect of Geniposide in Human Oral Squamous Carcinoma HSC-3 Cells

Yu Qian; Jia-Le Song; Peng Sun; Ruokun Yi; Honglin Liu; Xia Feng; Kun-Young Park; Xin Zhao

This study investigated the enhanced antiproliferative effect of Lactobacillus casei strain Shirota (LcS) on geniposide actions in human oral squamous carcinoma HSC-3 cells. An MTT assay, flow cytometry, qPCR assay, western blot and HPLC were used for this study. The concentration of 1.0 × 106 CFU/mL of LcS had no effect on the HOK normal oral epithelial cells and HSC-3 cancer cells. The 25 and 50 µg/mL geniposide concentrations also had no impact on HOK normal oral epithelial cells, but they had remarkable inhibitory effects on the growth of HSC-3 cancer cells, which are enhanced in the presence of LcS. By the flow cytometry assay, the LcS-geniposide-H (1.0 × 106 CFU/mL LcS and 50 µg/mL geniposide)-treated HSC-3 cancer cells had the largest number of cells undergoing apoptosis compared to cells treated with other combinationsand obviously more than cells treated with only geniposide-H (50 µg/mL geniposide). Geniposide-H could increase the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax, p53, p21, IκB-α, Fas, FasL, TIMP-1, and TIMP-2 as well as decrease those of Bcl-2, Bcl-xL, HIAP-1, HIAP-2, NF-κB, COX-2, iNOS, MMP-2, and MMP-9 compared to other groups of cells, and LcS further enhanced these changes, with results that are greater than for the cells treated with only a high concentration of geniposide. The results of this study show thatLcS enhanced the antiproliferative effect of geniposide in HSC-3 cancer cells.


Molecules | 2018

Comparison of Antioxidative Effects of Insect Tea and Its Raw Tea (Kuding Tea) Polyphenols in Kunming Mice

Xin Zhao; Jia-Le Song; Ruokun Yi; Guijie Li; Peng Sun; Kun-Young Park; Huayi Suo

Kudingcha is a traditional Chinese tea, and insect tea is a special drink produced by the metabolism of insect larvae using the raw Kuding tea. Insect tea polyphenols (ITP) and its raw tea (Kuding tea) polyphenols (KTP) are high-purity polyphenols extracted by centrifuge precipitation. The present study was designed to compare the antioxidative effects of insect tea polyphenols (ITP) and its raw tea (Kuding tea) polyphenols (KTP) on d-galactose-induced oxidation in Kunming (KM) mice. KM mice were treated with ITP (200 mg/kg) and KTP (200 mg/kg) by gavage, and vitamin C (VC, 200 mg/kg) was also used as a positive control by gavage. After determination in serum, liver and spleen, ITP-treated mice showed higher superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) activities and lower nitric oxide (NO), malonaldehyde (MDA) activities than VC-treated mice, KTP-treated mice and untreated oxidation mice (control group). By H&E section observation, the mice induced by d-galactose-induced oxidation showed more changes than normal mice, and oxidative damage appeared in liver and spleen tissues; ITP, VC and KTP improved oxidative damage of liver and spleen tissues, and the effects of ITP were better than VC and KTP. Using quantitative polymerase chain reaction (qPCR) and western blot experiments, it was observed that ITP could increase the mRNA and protein expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese superoxide dismutase (Mn-SOD), cupro/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), heme oxygenase-1 (HO-1), nuclear factor erythroid 2 related factor 2 (Nrf2), gamma glutamylcysteine synthetase (γ-GCS), and NAD(P)H:quinone oxidoreductase 1 (NQO1) and reduce inducible nitric oxide synthase (iNOS) expression in liver and spleen tissues compared to the control group. These effects were stronger than for VC and KTP. Both ITP and KTP had good antioxidative effects, and after the transformation of insects, the effects of ITP were better than that of KTP and even better than VC. Thus, ITP can be used as an antioxidant and anti-ageing functional food.


The International Journal of Biochemistry & Cell Biology | 2018

Anti-ageing skin effects of Korean bamboo salt on SKH1 hairless mice

Xin Zhao; Yongcai Qi; Ruokun Yi; Kun-Young Park

Bamboo salt is generated by baking bamboo and sea salt and is used as a traditional food or medicine. The aim of this study was to investigate the anti-ageing skin effects of Korean bamboo salt and to compare the antioxidant, anti-ageing and anti-inflammatory effects of various salts, including purified salt, solar salt, bath solar salt, Masada solar salt, 1-time baked bamboo salt (1× bamboo salt), and 9-times baked bamboo salt (9× bamboo salt). Based on the content of mineral elements, pH, OH groups and redox potential amperometric analysis, the 9× bamboo salt showed the most antioxidant components and characteristics compared to the other salts. The in vitro results showed that the 9× bamboo salt could inhibit oxidative damage by hydrogen peroxide (H2O2) treatment in HaCaT keratinocytes, and its effect was better than that of the other salts. In an in vivo experiment, SHK-1 hairless mice were treated with UV (ultraviolet) radiation to induce ageing. The epidermal thickness and epidermal structures were then assessed by phenotypic and histological analyses. The 0.2% 9× bamboo salt- and 1× bamboo salt-treated mice had a thinner epidermis than the control mice, and the sebaceous glands were almost intact with a regular arrangement that was similar to those in the normal group. Compared with the UV-treated group (control group) and other salt-treated groups, the 9× bamboo salt- and 1× bamboo salt-treated groups had higher dermal collagen and elastic fibre content. Fewer mast cells were observed in the 9× bamboo salt- and 1× bamboo salt-treated groups than in the control group. The activities of the skin antioxidant-related enzymes superoxide dismutase (SOD) and catalase (CAT) in the 9× bamboo salt- and 1× bamboo salt-treated groups were higher than those in other groups and similar to those in the normal group, but lipid peroxide (LPO) activity and carbonylated protein levels showed the opposite trends. Furthermore, the 9× bamboo salt- and 1× bamboo salt-treated groups had protein contents similar to those of the normal group. In addition, the 9× bamboo salt and 1× bamboo salt effectively down-regulated the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and up-regulated the expression of tissue inhibitor expression of matrix metalloproteinase-1 (TIMP-1), matrix metalloproteinase-2 (TIMP-2), SOD and CAT compared to the other salts at a concentration of 0.2% (p < 0.05). These results suggest that at appropriate concentrations, bamboo salt could prevent skin ageing induced by ultraviolet radiation b (UVB) photodamage.


Journal of Dairy Science | 2018

Lactobacillus plantarum YS2 (yak yogurt Lactobacillus) exhibited an activity to attenuate activated carbon-induced constipation in male Kunming mice

Xin Zhao; Yu Qian; Guijie Li; Ruokun Yi; Kun-Young Park; Jia-Le Song

The present study investigated the effects of Lactobacillus plantarum YS2 (LP-YS2) that was isolated from yak yogurt on activated carbon-induced constipation in Kunming (KM) mice. The KM mice were orally administered LP-YS2 and reference strain Lactobacillus delbrueckii ssp. bulgaricus. Administration of LP-YS2 [1.0 × 109 cfu/kg of body weight (BW)] promoted gastrointestinal peristalsis and reduced the first black stool defecation time (129 min), which clearly defines attenuation of the voiding difficulty in mice with constipation. The LP-YS2 treatment also increased the serum level of motilin (MTL; 178.2 pg/mL), gastrin (69.4 pg/mL), acetylcholine (Ach; 30.1 pg/mL), substance P (SP; 57.6 pg/mL), and vasoactive intestinal peptide (VIP; 53.2 pg/mL) and reduced the somatostatin (SS, 32.6 pg/mL) levels compared with the L. delbrueckii ssp. bulgaricus treatment (MTL, 139.7 pg/mL; gastrin, 43.1 pg/mL; Ach, 15.9 pg/mL; SP, 43.6 pg/mL; VIP, 32.3 pg/mL; SS, 55.1 pg/mL) and the control (MTL, 105.3 pg/mL; gastrin, 26.7 pg/mL; Ach, 9.7 pg/mL; SP, 30.2 pg/mL; VIP, 21.0 pg/mL; SS, 70.5 pg/mL). The LP-YS2 treatment significantly increased the colonic mRNA and protein expression of c-Kit (CD117, cluster of differentiation 117; 2.87 times mRNA expression of the control group), stem cell factor (30.40 times mRNA expression of the control group), and glial cell-derived neurotrophic factor (29.97 times mRNA expression of the control group) in mice with constipation. In addition, LP-YS2 reduced the expression of transient receptor potential vanilloid 1 (0.42 times mRNA expression of the control group) and nitric oxide synthase (0.49 times mRNA expression of the control group) in constipated mice. These results demonstrate that LP-YS2 was able to attenuate the activated carbon-induced constipation in KM mice.


Food & Function | 2018

Polyphenols in Kuding tea help prevent HCl/ethanol-induced gastric injury in mice

Xin Zhao; Peng Sun; Guijie Li; Ruokun Yi; Yu Qian; Kun-Young Park


Biomedical Research-tokyo | 2017

Preventive effects of Malvae verticilate and Perilla frutescens var. japonica leaf on activated carbon induced constipation in ICR mice

Ruokun Yi; Na Ji; Xin Zhao; Kun-Young Park


Biomedical Research-tokyo | 2017

Anti-tumor activities of bamboo salt on sarcoma 180 tumor-bearing BALB/c mice

Ruokun Yi; Yongcai Qi; Xin Zhao; Kun-Young Park


2016 5th International Conference on Social Science, Education and Humanities Research | 2016

Reform in Education of Traditional Chinese Medicine Knowledge Integration into Department of Food Quality and Safety

Huayi Suo; Ruokun Yi; Yu Qian


한국식품영양과학회 산업심포지움발표집 | 2015

Effects of Taemyeongcheong on Non-Alcholic Fatty Liver Disease in C57BL/6 Mice

Ruokun Yi; Jae-Hyun Ju; Yong-Kyu Kim; Yaung-lee Lim; Kun-Young Park

Collaboration


Dive into the Ruokun Yi's collaboration.

Top Co-Authors

Avatar

Xin Zhao

University of Education

View shared research outputs
Top Co-Authors

Avatar

Kun-Young Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Kun-Young Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Yu Qian

University of Education

View shared research outputs
Top Co-Authors

Avatar

Jia-Le Song

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Guijie Li

University of Education

View shared research outputs
Top Co-Authors

Avatar

Peng Sun

University of Education

View shared research outputs
Top Co-Authors

Avatar

Yaung-Iee Lim

Sungshin Women's University

View shared research outputs
Top Co-Authors

Avatar

Yongcai Qi

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge