Ruowen Wang
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruowen Wang.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Yanrong Wu; Kwame Sefah; Haipeng Liu; Ruowen Wang; Weihong Tan
We report the design of a self-assembled aptamer–micelle nanostructure that achieves selective and strong binding of otherwise low-affinity aptamers at physiological conditions. Specific recognition ability is directly built into the nanostructures. The attachment of a lipid tail onto the end of nucleic acid aptamers provides these unique nanostructures with an internalization pathway. Other merits include: extremely low off rate once bound with target cells, rapid recognition ability with enhanced sensitivity, low critical micelle concentration values, and dual-drug delivery pathways. To prove the potential detection/delivery application of this aptamer–micelle in biological living systems, we mimicked a tumor site in the blood stream by immobilizing tumor cells onto the surface of a flow channel device. Flushing the aptamer–micelles through the channel demonstrated their selective recognition ability under flow circulation in human whole-blood sample. The aptamer–micelles show great dynamic specificity in flow channel systems that mimic drug delivery in the blood system. Therefore, our DNA aptamer–micelle assembly has shown high potential for cancer cell recognition and for in vivo drug delivery applications.
Journal of the American Chemical Society | 2014
Zilong Zhao; Huanhuan Fan; Gaofeng Zhou; Huarong Bai; Hao Liang; Ruowen Wang; Xiao-Bing Zhang; Weihong Tan
A novel dual-activatable fluorescence/MRI bimodal platform is designed for tumor cell imaging by using a redoxable manganese dioxide (MnO2) nanosheet-aptamer nanoprobe. The redoxable MnO2 nanosheet acts as a DNA nanocarrier, fluorescence quencher, and intracellular glutathione (GSH)-activated MRI contrast agent. In the absence of target cells, neither fluorescence signaling nor MRI contrast of the nanoprobe is activated. In the presence of target cells, the binding of aptamers to their targets weakens the adsorption of aptamers on the MnO2 nanosheets, causing partial fluorescence recovery, illuminating the target cells, and also facilitating the endocytosis of nanoprobes into target cells. After endocytosis, the reduction of MnO2 nanosheets by GSH further activates the fluorescence signals and generates large amounts of Mn(2+) ions suitable for MRI. This platform should facilitate the development of various dual-activatable fluorescence/MRI bimodalities for use in cells or in vivo.
Accounts of Chemical Research | 2014
Hao Liang; Xiao-Bing Zhang; Yifan Lv; Liang Gong; Ruowen Wang; Xiaoyan Zhu; Ronghua Yang; Weihong Tan
Conspectus DNA performs a vital function as a carrier of genetic code, but in the field of nanotechnology, DNA molecules can catalyze chemical reactions in the cell, that is, DNAzymes, or bind with target-specific ligands, that is, aptamers. These functional DNAs with different modifications have been developed for sensing, imaging, and therapeutic systems. Thus, functional DNAs hold great promise for future applications in nanotechnology and bioanalysis. However, these functional DNAs face challenges, especially in the field of biomedicine. For example, functional DNAs typically require the use of cationic transfection reagents to realize cellular uptake. Such reagents enter the cells, increasing the difficulty of performing bioassays in vivo and potentially damaging the cell’s nucleus. To address this obstacle, nanomaterials, such as metallic, carbon, silica, or magnetic materials, have been utilized as DNA carriers or assistants. In this Account, we describe selected examples of functional DNA-containing nanomaterials and their applications from our recent research and those of others. As models, we have chosen to highlight DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer–micelles, and we illustrate the potential of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand–receptor interactions, decreased steric hindrance, and increased surface roughness can be achieved from a high density of DNA that is bound to the surface of nanomaterials, resulting in a higher affinity for complementary DNA and other targets. In addition, this high density of DNA causes a high local salt concentration and negative charge density, which can prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles can effectively catalyze chemical reactions even in living cells. And it has been confirmed that DNA–nanomaterial complexes can enter cells more easily than free single-stranded DNA. Nanomaterials can be designed and synthesized in needed sizes and shapes, and they possess unique chemical and physical properties, which make them useful as DNA carriers or assistants, excellent signal reporters, transducers, and amplifiers. When nanomaterials are combined with functional DNAs to create novel assay platforms, highly sensitive biosensing and high-resolution imaging result. For example, gold nanoparticles and graphene oxides can quench fluorescence efficiently to achieve low background and effectively increase the signal-to-background ratio. Meanwhile, gold nanoparticles themselves can be colorimetric reporters because of their different optical absorptions between monodispersion and aggregation. DNA self-assembled nanomaterials contain several properties of both DNA and nanomaterials. Compared with DNA–nanomaterial complexes, DNA self-assembled nanomaterials more closely resemble living beings, and therefore they have lower cytotoxicity at high concentrations. Functional DNA self-assemblies also have high density of DNA for multivalent reaction and three-dimensional nanostructures for cell uptake. Now and in the future, we envision the use of DNA bases in making designer molecules for many challenging applications confronting chemists. With the further development of artificial DNA bases using smart organic synthesis, DNA macromolecules based on elegant molecular assembly approaches are expected to achieve great diversity, additional versatility, and advanced functions.
ACS Nano | 2011
Tao Chen; Mohammed Ibrahim Shukoor; Ruowen Wang; Zilong Zhao; Quan Yuan; Suwussa Bamrungsap; Xiangling Xiong; Weihong Tan
Targeted chemotherapy and magnetic resonance imaging of cancer cells in vitro has been achieved using a smart multifunctional nanostructure (SMN) constructed from a porous hollow magnetite nanoparticle (PHMNP), a heterobifunctional PEG ligand, and an aptamer. The PHMNPs were prepared through a three-step reaction and loaded with the anticancer drug doxorubicin while being functionalized with PEG ligands. Targeting aptamers were then introduced by reaction with the PEG ligands. The pores of the PHMNPs are stable at physiological pH, but they are subject to acid etching. Specific binding and uptake of the SMN to the target cancer cells induced by aptamers was observed. In addition, multiple aptamers on the surface of one single SMN led to enhanced binding and uptake to target cancer cells due to the multivalent effect. Upon reaching the lysosomes of target cancer cells through receptor-mediated endocytosis, the relatively low lysosomal pH level resulted in corrosion of the PHMNP pores, facilitating the release of doxorubicin to kill the target cancer cells. In addition, the potential of using SMN for magnetic resonance imaging was also investigated.
Angewandte Chemie | 2012
Mingxu You; Yan Chen; Xiao-Bing Zhang; Haipeng Liu; Ruowen Wang; Kelong Wang; Kathryn R. Williams; Weihong Tan
The development of nanotechnology has been largely inspired by the biological world. The complex, but well-organized, living system hosts an array of molecular-sized machines responsible for information processing, structure building and, sometimes, movement. We present here a novel light-powered DNA mechanical device, which is reminiscent of cellular protein motors in nature, especially those of green plants. This walking device, which is based on pyrene- assisted photolysis of disulfide bonds, is capable of autonomous locomotion, with light control of initiation, termination and velocity. Based on DNA sequence design and such physical conditions as temperature and ionic strength, this photon-fueled DNA walker exhibits the type of operational freedom and mechanical speed that may rival protein motors in the future.
Journal of the American Chemical Society | 2014
Ruowen Wang; Guizhi Zhu; Lei Mei; Yan Xie; Haibin Ma; Mao Ye; Feng-Ling Qing; Weihong Tan
Aptamer–drug conjugates (ApDCs) are promising targeted drug delivery systems for reducing toxicity while increasing the efficacy of chemotherapy. However, current ApDC technologies suffer from problems caused by the complicated preparation and low controllability of drug–aptamer conjugation. To solve such problems, we have designed and synthesized a therapeutic module for solid phase synthesis, which is a phosphoramdite containing an anticancer drug moiety and a photocleavable linker. Using this module, we have realized automated and modular synthesis of ApDCs, and multiple drugs were efficiently incorporated into ApDCs at predesigned positions. The ApDCs not only recognize target cancer cells specifically, but also release drugs in a photocontrollable manner. We demonstrated the potential of automated and modular ApDC technology for applications in targeted cancer therapy.
ACS Nano | 2011
Mingxu You; Ruowen Wang; Xiao-Bing Zhang; Yan Chen; Kelong Wang; Lu Peng; Weihong Tan
Future smart nanostructures will have to rely on molecular assembly for unique or advanced desired functions. For example, the evolved ribosome in nature is one example of functional self-assembly of nucleic acids and proteins employed in nature to perform specific tasks. Artificial self-assembled nanodevices have also been developed to mimic key biofunctions, and various nucleic acid- and protein-based functional nanoassemblies have been reported. However, functionally regulating these nanostructures is still a major challenge. Here we report a general approach to fine-tune the catalytic function of DNA-enzymatic nanosized assemblies by taking advantage of the trans-cis isomerization of azobenzene molecules. To the best of our knowledge, this is the first study to precisely modulate the structures and functions of an enzymatic assembly based on light-induced DNA scaffold switching. Via photocontrolled DNA conformational switching, the proximity of multiple enzyme catalytic centers can be adjusted, as well as the catalytic efficiency of cofactor-mediated DNAzymes. We expect that this approach will lead to the advancement of DNA-enzymatic functional nanostructures in future biomedical and analytical applications.
Journal of Fluorine Chemistry | 2003
Feng-Ling Qing; Ruowen Wang; Benhan Li; Xing Zheng; Wei-Dong Meng
A series of 4,6-disubstituted pyrimidines were synthesized via Suzuki and Kumada coupling reaction of 4,6-dichloropyrimidine.
Journal of the American Chemical Society | 2012
Tao Chen; Ismail Ocsoy; Quan Yuan; Ruowen Wang; Mingxu You; Zilong Zhao; Erqun Song; Xiao-Bing Zhang; Weihong Tan
High quality nanocrystals have demonstrated substantial potential for biomedical applications. However, being generally hydrophobic, their use has been greatly limited by complicated and inefficient surface engineering that often fails to yield biocompatible nanocrystals with minimal aggregation in biological fluids and active targeting toward specific biomolecules. Using chimeric DNA molecules, we developed a one-step facile surface engineering method for hydrophobic nanocrystals. The procedure is simple and versatile, generating individual nanocrystals with multiple ligands. In addition, the resulting nanocrystals can actively and specifically target various molecular addresses, varying from nucleic acids to cancer cells. Together, the strategy developed here holds great promise in generating critical technologies needed for biomedical applications of nanocrystals.
Bioconjugate Chemistry | 2011
Joseph A. Phillips; Haipeng Liu; Meghan B. O’Donoghue; Xiangling Xiong; Ruowen Wang; Mingxu You; Kwame Sefah; Weihong Tan
The rational design of DNA/RNA aptamers for use as molecular probes depends on a clear understanding of their structural elements in relation to target-aptamer binding interactions. We present a simple method to create aptamer probes that can occupy two different structural states. Then, based on the difference in binding affinity between these states, target-aptamer binding interactions can be elucidated. The basis of our two-state system comes from the incorporation of azobenzene within the DNA strand. Azobenzene can be used to photoregulate the melting of DNA-duplex structures. When incorporated into aptamers, the light-regulated conformational change of azobenzene can be used to analyze how aptamer secondary structure is involved in target binding. Azobenzene-modified aptamers showed no change in target selectivity, but showed differences in binding affinity as a function of the number, position, and conformation of azobenzene modifications. Aptamer probes that can change binding affinity on demand may have future uses in targeted drug delivery and photodynamic therapy.