Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruozhi Zhao is active.

Publication


Featured researches published by Ruozhi Zhao.


Free Radical Research | 2011

Involvement of NADPH oxidase in up-regulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts induced by oxidized LDL and in apolipoprotein E-deficient mice.

Ruozhi Zhao; Mohammed H. Moghadasian; Garry X. Shen

Abstract The present study demonstrated that oxidized LDL (oLDL) increased the generation of superoxide and hydrogen peroxide (H2O2), the abundances of NADPH oxidase (NOX)4, NOX2, p22-phox and lectin-like oLDL receptor-1 (LOX-1) in wild-type or heat shock factor-1 (HSF1)-deficient mouse embryo fibroblasts (MEF). LOX-1 antibody inhibited LDL or oLDL-induced expression of NOX components in MEF. Abundance of HSF1 or plasminogen activator inhibitor-1 (PAI-1) was increased by oLDL in wild-type, but not in HSF1-deficient MEF. Diphenyleneiodonium or siRNA for NOX or p22-phox inhibited oLDL-induced increases of HSF1, PAI-1 and H2O2 in MEF. Increased NOX4, NOX2, LOX1, HSF1 and PAI-1 were detected in aortae and hearts of apolipoprotein E-knockout (apoE-KO) mice compared to controls, which were associated with increased serum cholesterol or plasma PAI-1. The results suggest that NOX is required for oLDL-induced HSF1 or PAI-1 expression in MEF, which was supported by the up-regulation of NOX, LOX-1, HSF1 and PAI-1 in apoE-KO mice.


Journal of Nutritional Biochemistry | 2015

Endoplasmic reticulum stress in diabetic mouse or glycated LDL-treated endothelial cells: protective effect of Saskatoon berry powder and cyanidin glycans

Ruozhi Zhao; Xueping Xie; Khuong Le; Wende Li; Mohammed H. Moghadasian; Trust Beta; Garry X. Shen

Endoplasmic reticulum (ER) stress is associated with insulin resistance and diabetic cardiovascular complications, and mechanism or remedy for ER stress remains to be determined. The results of the present study demonstrated that the levels of ER stress or unfolded protein response (UPR) markers, the intensity of thioflavin T (ThT) fluorescence and the abundances of GRP78/94, XBP-1 and CHOP proteins were elevated in cardiovascular tissue of diabetic leptin receptor-deficient (db/db) mice. Cyanidin-3-glucoside (C3G) and cyanidin-3-galactoside (C3Ga) are major anthocyanins in Saskatoon berry (SB) powder. The administration of 5% SB powder for 4 weeks attenuated ThT fluorescence and the UPR markers in hearts and aortae of wild-type and db/db mice. Treatment with glycated low-density lipoprotein (gLDL) increased ThT intensity in human umbilical vein endothelial cells (ECs). Elevated UPR markers were detected in gLDL-treated EC compared to control cultures. The involvement of ER stress in gLDL-treated EC was supported by that the addition of 4-phenyl butyrate acid (a known ER stress antagonist) inhibited gLDL-induced increases in ER stress or UPR markers. C3G at 30 μM or C3Ga at 100 μM reached their maximal inhibition on gLDL-induced increases in ThT, GRP78/94, XBP-1 and CHOP in EC. The results demonstrated that ER stress was enhanced in cardiovascular tissue of db/db mice or gLDL-treated EC. SB powder or cyanidin glycans prevented the abnormal increases in ER stress and UPR markers in cardiovascular tissue of diabetic db/db mice or gLDL-treated EC.


Journal of Diabetes and Its Complications | 2016

Impact of glycated LDL on endothelial nitric oxide synthase in vascular endothelial cells: involvement of transmembrane signaling and endoplasmic reticulum stress

Manoj Mohanan Nair; Ruozhi Zhao; Xueping Xie; Garry X. Shen

Cardiovascular diseases are the major cause of mortality in diabetes patients. Increased levels of glycated low density lipoprotein (glyLDL) are detected in diabetic patients. Endothelial nitric oxide synthase (eNOS) generates nitric oxide, which is responsible to endothelium-dependent vasodilation. The impact of glyLDL on the expression and activity of eNOS in vascular endothelial cells (EC) remains unknown. The present study investigated the effect of glyLDL on the levels of protein, mRNA and activity of eNOS in cultured human umbilical vein EC. The results demonstrated that incubation of EC with physiological concentrations of glyLDL significantly reduced the abundances of eNOS protein in EC with the maximal inhibition at 100μg/ml for 24h. At the optimized condition, glyLDL decreased eNOS mRNA and reduced its activity in EC. Blocking antibody against the receptor for advanced glycation end products (RAGE) prevented glyLDL-induced downregulation of eNOS in EC. GlyLDL increased the translocation of H-Ras from cytoplasm to membrane in EC. Farnesyl-transferase inhibitor-276, an H-Ras antagonist, normalized glyLDL-induced downregulation of eNOS and prevented glyLDL-induced upregulation of H-Ras in EC membrane. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress antagonist, prevented glyLDL-induced eNOS downregulation in EC. The results suggest that diabetes-associated metabolic stress inhibits the production and activity of eNOA in cultured human vascular EC through the activation of RAGE/H-Ras mediated upstream signaling pathway. ER stress induced by glyLDL is possibly involved in eNOS downregulation.


Journal of Nutritional Biochemistry | 2014

Effects of Saskatoon berry powder on monocyte adhesion to vascular wall of leptin receptor-deficient diabetic mice

Ruozhi Zhao; Khuong Le; Wende Li; Song Ren; Mohammed H. Moghadasian; Trust Beta; Garry X. Shen

HYPOTHESIS Atherosclerotic cardiovascular complications are the leading cause of death in diabetic patients. Monocyte adhesion is an early event for atherogenesis. Previous studies demonstrated that dark-skin berries had cardiovascular protective effects. We hypothesize that Saskatoon berry (SB) powder may reduce monocyte adhesion in leptin receptor-deficient (db/db) diabetic mice. METHODS Wild-type and db/db mice were fed with chow or supplemented with SB powder. Anthocyanins in SB powder were identified using mass spectrometry. Mouse monocytes were incubated with mouse aorta. Monocyte adhesion was counted under microscopy. Inflammatory or metabolic markers in blood or tissue were analyzed using immunological or biochemical methods. RESULTS SB powder significantly reduced monocyte adhesion to aorta from diabetic db/db mice compared to regular chow. The increased monocyte adhesion to aorta was normalized in db/db mice treated with ≥5% of SB powder for 4 weeks. Increased contents of Nicotinamide adenine dinucleotide phosphate oxidase (NADPH) oxidase-4, heat shock factor-1, monocyte chemotactic protein (MCP)-1, intracellular adhesion molecule (ICAM)-1, P-selectin, tumor necrosis factor-α, plasminogen activator inhibitor (PAI)-1 and urokinase plasminogen activator in aorta or heart apex, elevated plasma PAI-1 and MCP-1 were detected in db/db mice on chow compared to wild-type mice on the same diet; 5% SB powder inhibited the increases of inflammatory, fibrinolytic or stress regulators in aorta or heart apex of db/db mice. Monocyte adhesion positively correlated with blood glucose, cholesterol, body weight, heart MCP-1, PAI-1 or ICAM-1. CONCLUSION The findings suggest that SB powder attenuated monocyte adhesion to aorta of db/db mice, which was potentially mediated through inhibiting the inflammatory, stress and/or fibrinolyic regulators.


Free Radical Biology and Medicine | 2013

Regulatory role of NADPH oxidase in glycated LDL-induced upregulation of plasminogen activator inhibitor-1 and heat shock factor-1 in mouse embryo fibroblasts and diabetic mice

Ruozhi Zhao; Khuong Le; Mohammed H. Moghadasian; Garry X. Shen

Cardiovascular disease is the predominant cause of death in diabetic patients. Fibroblasts are one of the major types of cells in the heart or vascular wall. Increased levels of glycated low-density lipoprotein (glyLDL) were detected in diabetic patients. Previous studies in our group demonstrated that oxidized LDL increased the amounts of NADPH oxidase (NOX), plasminogen activator inhibitor-1 (PAI-1), and heat shock factor-1 (HSF1) in fibroblasts. This study examined the expression of NOX, PAI-1, and HSF1 in glyLDL-treated wild-type or HSF1-deficient mouse embryo fibroblasts (MEFs) and in leptin receptor-knockout (db/db) diabetic mice. Treatment with physiologically relevant levels of glyLDL increased superoxide and H2O2 release and the levels of NOX4 and p22phox (an essential component of multiple NOX complexes) in wild-type or HSF1-deficient MEFs. The levels of HSF1 and PAI-1 were increased by glyLDL in wild-type MEFs, but not in HSF1-deficient MEFs. Diphenyleneiodonium (a nonspecific NOX inhibitor) or small interfering RNA for p22phox prevented glyLDL-induced increases in the levels of NOX4, HSF1, or PAI-1 in MEFs. The amounts of NOX4, HSF1, and PAI-1 were elevated in hearts of db/db diabetic mice compared to wild-type mice. The results suggest that glyLDL increased the abundance of NOX4 or p22phox via an HSF1-independent pathway, but that of PAI-1 via an HSF1-dependent manner. NOX4 plays a crucial role in glyLDL-induced expression of HSF1 and PAI-1 in mouse fibroblasts. Increased expression of NOX4, HSF1, and PAI-1 was detected in cardiovascular tissue of diabetic mice.


Journal of Agricultural and Food Chemistry | 2017

Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice

Mohammed H. Moghadasian; Ruozhi Zhao; Nora Ghazawwi; Khuong Le; Franklin B. Apea-Bah; Trust Beta; Garry X. Shen

The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.


Inflammation Research | 2017

Reduced monocyte adhesion to aortae of diabetic plasminogen activator inhibitor-1 knockout mice

Ruozhi Zhao; Khuong Le; Mohammed H. Moghadasian; Garry X. Shen

Objective and designTo determine the requirement of plasminogen activator inhibitor-1-knockout (PAI-1) for monocyte adhesion in animals and cells under diabetic conditions.Methods and subjectsMonocyte adhesion assay, enzyme-linked immunosorbent assay, and Western blotting were used in analyzing samples from PAI-1-knockout (PAI-1-KO) mice or cultured human umbilical vein endothelial cells (HUVEC).TreatmentsDiabetes in PAI-1-KO and wild-type mice was induced by intraperitoneal injection of streptozotocin (STZ). HUVEC was transfected with short interference RNA (siRNA) against PAI-1, tumor necrosis factor-α (TNFα), or toll-like receptor (TLR4), and then was treated with glycated low-density lipoproteins (glyLDL).ResultsThe adhesion of monocytes to aortic intima was reduced in PAI-1-KO mice, which was associated with decreased levels of TNFα and monocyte chemotactic protein-1 (MCP-1) in plasma and cardiovascular tissue, and increased abundances of urokinase plasminogen activator (uPA) and uPA receptor (uPAR) in cardiovascular tissue compared to wild-type mice. Significant reductions in monocyte adhesion, inflammatory, and fibrinolytic regulators were detected in cardiovascular tissue or plasma in diabetic PAI-1-KO mice compared to wild-type diabetic mice. Transfection of PAI-1, TNFα or TLR4 siRNA to HUVEC inhibited glyLDL-induced monocyte adhesion to EC. PAI-1 siRNA inhibited the abundances of TLR4 and TNFα in EC.ConclusionThe findings suggest that PAI-1 is required for diabetes-induced monocyte adhesion via interactions with uPA/uPAR, and it also regulates TLR4 and TNFα expression in vascular EC. Inhibition of PAI-1 potentially reduces vascular inflammation under diabetic condition.


Canadian Journal of Diabetes | 2018

Impact of Saskatoon Berry Powder on Insulin Resistance and Intestinal Microbiome in High-Fat, High-Sucrose Diet-Induced Obese and Insulin-Resistant Mice

Ruozhi Zhao; Ehsan Khafipour; Shadi Sepehri; Fei Huang; Trust Beta; Garry X. Shen


Atherosclerosis Supplements | 2018

Influence of Saskatoon Berry Powder on Insulin Resistance and Intestinal Microbiota in High Fat-High Sucrose Diet-Induced Obese Mice

Ruozhi Zhao; Ehsan Khafipour; Shadi Sepehri; Trust Beta; Garry X. Shen


Atherosclerosis Supplements | 2018

Germinated Brown Rice Attenuates Atherosclerosis and Vascular Inflammation in Low-Density Lipoprotein Receptor-Knockout Mice

Ruozhi Zhao; Nora Ghazzawi; Jiansu Wu; Khuong Le; Chunyang Li; Mohammed H. Moghadasian; Yaw L. Siow; Franklin B. Apea-Bah; Trust Beta; Zhengfeng Yin; Garry X. Shen

Collaboration


Dive into the Ruozhi Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khuong Le

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Trust Beta

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Xueping Xie

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garry Shen

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Song Ren

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Wende Li

University of Manitoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge