Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rupal Ramakrishnan is active.

Publication


Featured researches published by Rupal Ramakrishnan.


Journal of Clinical Investigation | 2010

Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice

Rupal Ramakrishnan; Deepak Assudani; Srinivas Nagaraj; Terri B. Hunter; Hyun Il Cho; Scott Antonia; Soner Altiok; Esteban Celis; Dmitry I. Gabrilovich

Cancer immunotherapy faces a serious challenge because of low clinical efficacy. Recently, a number of clinical studies have reported the serendipitous finding of high rates of objective clinical response when cancer vaccines are combined with chemotherapy in patients with different types of cancers. However, the mechanism of this phenomenon remains unclear. Here, we tested in mice several cancer vaccines and an adoptive T cell transfer approach to cancer immunotherapy in combination with several widely used chemotherapeutic drugs. We found that chemotherapy made tumor cells more susceptible to the cytotoxic effect of CTLs through a dramatic perforin-independent increase in permeability to GrzB released by the CTLs. This effect was mediated via upregulation of mannose-6-phosphate receptors on the surface of tumor cells and was observed in mouse and human cells. When combined with chemotherapy, CTLs raised against specific antigens were able to induce apoptosis in neighboring tumor cells that did not express those antigens. These data suggest that small numbers of CTLs could mediate a potent antitumor effect when combined with chemotherapy. In addition, these results provide a strong rationale for combining these modalities for the treatment of patients with advanced cancers.


Journal of Clinical Investigation | 2011

Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice

Tangying Lu; Rupal Ramakrishnan; Soner Altiok; Je In Youn; Pingyan Cheng; Esteban Celis; Vladimir Pisarev; Simon Sherman; Michael B. Sporn; Dmitry I. Gabrilovich

Cancer immunotherapeutic approaches induce tumor-specific immune responses, in particular CTL responses, in many patients treated. However, such approaches are clinically beneficial to only a few patients. We set out to investigate one possible explanation for the failure of CTLs to eliminate tumors, specifically, the concept that this failure is not dependent on inhibition of T cell function. In a previous study, we found that in mice, myeloid-derived suppressor cells (MDSCs) are a source of the free radical peroxynitrite (PNT). Here, we show that pre-treatment of mouse and human tumor cells with PNT or with MDSCs inhibits binding of processed peptides to tumor cell-associated MHC, and as a result, tumor cells become resistant to antigen-specific CTLs. This effect was abrogated in MDSCs treated with a PNT inhibitor. In a mouse model of tumor-associated inflammation in which the antitumor effects of antigen-specific CTLs are eradicated by expression of IL-1β in the tumor cells, we determined that therapeutic failure was not caused by more profound suppression of CTLs by IL-1β-expressing tumors than tumors not expressing this proinflammatory cytokine. Rather, therapeutic failure was a result of the presence of PNT. Clinical relevance for these data was suggested by the observation that myeloid cells were the predominant source of PNT in human lung, pancreatic, and breast cancer samples. Our data therefore suggest what we believe to be a novel mechanism of MDSC-mediated tumor cell resistance to CTLs.


International Journal of Radiation Oncology Biology Physics | 2012

Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

Steven E. Finkelstein; Cristina Iclozan; Marilyn M. Bui; Matthew J. Cotter; Rupal Ramakrishnan; Jamil Ahmed; David Noyes; David Cheong; Ricardo J. Gonzalez; Randy V. Heysek; Claudia Berman; Brianna Lenox; William Janssen; Jonathan S. Zager; Vernon K. Sondak; G. Douglas Letson; Scott Antonia; Dmitry I. Gabrilovich

PURPOSE The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). METHODS AND MATERIAL Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 10(7) DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. RESULTS The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4(+) T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with (111)In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. CONCLUSIONS Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.


Cancer Immunology, Immunotherapy | 2008

Combined modality immunotherapy and chemotherapy: a new perspective

Rupal Ramakrishnan; Scott Antonia; Dmitry I. Gabrilovich

The results of recent clinical trials have demonstrated that cancer vaccines continue to struggle to achieve tangible clinical benefits as monotherapy. Tumor-induced abnormalities in the immune system hamper anti-tumor T cell responses limiting the effectiveness of cancer immunotherapy. Recently, evidence has been mounting to suggest that immunotherapy has the possibility of achieving better success when used in combination with conventional chemotherapy. In clinical trials, immune responses elicited by cancer vaccines appear to augment the effectiveness of subsequent conventional cancer therapies.


Journal of Immunology | 2014

Oxidized Lipids Block Antigen Cross-Presentation by Dendritic Cells in Cancer

Wei Cao; Rupal Ramakrishnan; Vladimir A. Tuyrin; Filippo Veglia; Thomas Condamine; Andrew A. Amoscato; Dariush Mohammadyani; Joseph J. Johnson; Lan Min Zhang; Judith Klein-Seetharaman; Esteban Celis; Valerian E. Kagan; Dmitry I. Gabrilovich

Cross-presentation is one of the main features of dendritic cells (DCs), which is critically important for the development of spontaneous and therapy-inducible antitumor immune responses. Patients, at early stages of cancer, have normal presence of DCs. However, the difficulties in the development of antitumor responses in patients with low tumor burden raised the question of the mechanisms of DC dysfunction. In this study, we found that, in differentiated DCs, tumor-derived factors blocked the cross-presentation of exogenous Ags without inhibiting the Ag presentation of endogenous protein or peptides. This effect was caused by intracellular accumulation of different types of oxidized neutral lipids: triglycerides, cholesterol esters, and fatty acids. In contrast, the accumulation of nonoxidized lipids did not affect cross-presentation. Oxidized lipids blocked cross-presentation by reducing the expression of peptide–MHC class I complexes on the cell surface. Thus, this study suggests the novel role of oxidized lipids in the regulation of cross-presentation.


Cancer Immunology, Immunotherapy | 2013

Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer

Rupal Ramakrishnan; Dmitry I. Gabrilovich

There is mounting evidence to support the use of a combination of immunotherapy with chemotherapy in the treatment of various types of cancers. However, the mechanism(s), by which these modalities are synergized, are not fully understood. In this review, we discuss several possible mechanisms of the combined effect of immunotherapy and chemotherapy of cancer. We will examine various aspects of this issue such as the combination of different treatment options, the dosage for each arm of treatment, and, more importantly, the timing and sequence of the administration of these treatments.


Cancer Research | 2012

Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy

Rupal Ramakrishnan; Chun Huang; Hyun Il Cho; Mark C. Lloyd; Joseph O. Johnson; Xiubao Ren; Soner Altiok; Daniel M. Sullivan; Jeffrey S. Weber; Esteban Celis; Dmitry I. Gabrilovich

Autophagy attenuates the efficacy of conventional chemotherapy but its effects on immunotherapy have been little studied. Here, we report that chemotherapy renders tumor cells more susceptible to lysis by CTL in vivo. Moreover, bystander tumor cells that did not express antigen were killed by CTL. This effect was mediated by transient but dramatic upregulation of the mannose-6-phosphate receptor (MPR) on the tumor cell surface. Antitumor effects of combined treatment related to the kinetics of MPR upregulation and abrogation of this event abolished the combined effect of immunotherapy and chemotherapy. MPR accumulation on the tumor cell surface during chemotherapy was observed in different mouse tumor models and in patients with multiple myeloma. Notably, this effect was the result of redistribution of the receptor caused by chemotherapy-inducible autophagy. Together, our findings reveal one molecular mechanism through which the antitumor effects of conventional cancer chemotherapy and immunotherapy are realized.


Cancer Immunology, Immunotherapy | 2011

Mechanism of synergistic effect of chemotherapy and immunotherapy of cancer

Rupal Ramakrishnan; Dmitry I. Gabrilovich

In recent years, the combination of cancer immunotherapy with standard therapeutic modality is gaining credibility due to a number of clinical trials demonstrating therapeutic success of such combination therapies. However, the mechanism of this phenomenon is poorly understood. Here, we will discuss recent findings that suggest novel mechanisms of synergistic effect of cancer immunotherapy and chemotherapy.


Cancer Immunology, Immunotherapy | 2012

Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines.

Chun Huang; Rupal Ramakrishnan; Marko Trkulja; Xiubao Ren; Dmitry I. Gabrilovich

In this study, we tested the effect of intratumoral administration of dendritic cells (DCs) with inducible expression of different cytokines, using the novel Rheoswitch Therapeutic System on the experimental models of renal cell cancer (RENCA) and MethA sarcoma. Intratumoral injection of DCs, engineered to express IL-12, IL-21, or IFN-α, showed potent therapeutic effect against established tumor. This effect was associated with the induction of potent tumor antigen-specific CD8+ T-cell responses, as well as the infiltration of tumors with CD4+ and CD8+ T cells but not with the cytotoxic activity of DCs. Combination of i.t. administration of DCs, producing different cytokines, did not enhance the antitumor effect of therapy with single cytokine. These results indicate that RTS can be a potent tool for conditional topical cytokine delivery, in combination with DC administration. However, combination of different cytokines may not necessarily improve the outcome of treatment.


Cancer Immunology, Immunotherapy | 2014

Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice.

Sungjune Kim; Rupal Ramakrishnan; Sergio Lavilla-Alonso; Prakash Chinnaiyan; Nikhil Rao; Erin E.E. Fowler; John J. Heine; Dmitry I. Gabrilovich

There is a significant body of evidence demonstrating that radiation therapy (XRT) enhances the effect of immune therapy. However, the precise mechanisms by which XRT potentiates the immunotherapy of cancer remain elusive. Here, we report that XRT potentiates the effect of immune therapy via induction of autophagy and resultant trafficking of mannose-6-phopsphate receptor (MPR) to the cell surface. Irradiation of different tumor cells caused substantial up-regulation of MPR on the cell surface in vitro and in vivo. Down-regulation of MPR in tumor cells with shRNA completely abrogated the combined effect of XRT and immunotherapy (CTLA4 antibody) in B16F10-bearing mice without changes in the tumor-specific responses of T cells. Radiation-induced MPR up-regulation was the result of redistribution of the receptor to the cell surface. This effect was caused by autophagy with redirection of MPR to autophagosomes in a clathrin-dependent manner. In autophagosomes, MPR lost its natural ligands, which resulted in subsequent trafficking of empty receptor(s) back to the surface. Together, our data demonstrated a novel mechanism by which XRT can enhance the effect of immunotherapy and the molecular mechanism of this process.

Collaboration


Dive into the Rupal Ramakrishnan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esteban Celis

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Scott Antonia

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew J. Cotter

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Brianna Lenox

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Douglas Letson

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge