Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rupali A. Gadkari is active.

Publication


Featured researches published by Rupali A. Gadkari.


Human Gene Therapy Methods | 2013

Bioengineering of AAV2 Capsid at Specific Serine, Threonine, or Lysine Residues Improves Its Transduction Efficiency in Vitro and in Vivo

Nishanth Gabriel; Sangeetha Hareendran; Dwaipayan Sen; Rupali A. Gadkari; Govindarajan Sudha; Ruchita Selot; Mansoor Hussain; Ramya Dhaksnamoorthy; Rekha Samuel; Narayanaswamy Srinivasan; Alok Srivastava; Giridhara R. Jayandharan

We hypothesized that the AAV2 vector is targeted for destruction in the cytoplasm by the host cellular kinase/ubiquitination/proteasomal machinery and that modification of their targets on AAV2 capsid may improve its transduction efficiency. In vitro analysis with pharmacological inhibitors of cellular serine/threonine kinases (protein kinase A, protein kinase C, casein kinase II) showed an increase (20-90%) on AAV2-mediated gene expression. The three-dimensional structure of AAV2 capsid was then analyzed to predict the sites of ubiquitination and phosphorylation. Three phosphodegrons, which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, were identified. Mutation targets comprising eight serine (S) or seven threonine (T) or nine lysine (K) residues were selected in and around phosphodegrons on the basis of their solvent accessibility, overlap with the receptor binding regions, overlap with interaction interfaces of capsid proteins, and their evolutionary conservation across AAV serotypes. AAV2-EGFP vectors with the wild-type (WT) capsid or mutant capsids (15 S/T→alanine [A] or 9 K→arginine [R] single mutant or 2 double K→R mutants) were then evaluated in vitro. The transduction efficiencies of 11 S/T→A and 7 K→R vectors were significantly higher (~63-90%) than the AAV2-WT vectors (~30-40%). Further, hepatic gene transfer of these mutant vectors in vivo resulted in higher vector copy numbers (up to 4.9-fold) and transgene expression (up to 14-fold) than observed from the AAV2-WT vector. One of the mutant vectors, S489A, generated ~8-fold fewer antibodies that could be cross-neutralized by AAV2-WT. This study thus demonstrates the feasibility of the use of these novel AAV2 capsid mutant vectors in hepatic gene therapy.


Glycoconjugate Journal | 2006

Characterization of the N-linked oligosaccharides from human chorionic gonadotropin expressed in the methylotrophic yeast Pichia pastoris

Véronique Blanchard; Rupali A. Gadkari; Gerrit J. Gerwig; Bas R. Leeflang; Rajan R. Dighe; Johannis P. Kamerling

Human chorionic gonadotropin (hCG) is a heterodimeric, placental glycoprotein hormone involved in the maintenance of the corpus luteum during the first trimester of pregnancy. Biologically active hCG has been successfully expressed in the yeast Pichia pastoris (phCG). In the context of structural studies and therapeutic applications of phCG, detailed information about its glycosylation pattern is a prerequisite. To this end N-glycans were released with peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase F and fractionated via anion-exchange chromatography (Resource Q) yielding both neutral (80%) and charged, phosphate-containing (20%) high-mannose-type structures. Subfractionations were carried out via normal phase (Lichrosorb-NH2) and high-pH anion-exchange (CarboPac PA-1) chromatography. Structural analyses of the released N-glycans were carried out by using HPLC profiling of fluorescent 2-aminobenzamide derivatives, MALDI-TOF mass spectrometry, and 500-MHz 1H-NMR spectroscopy. Detailed neutral oligosaccharide structures, in the range of Man8GlcNAc2 to Man11GlcNAc2 including molecular isomers, could be established, and structures up to Man15GlcNAc2 were indicated. Phosphate-containing oligosaccharides ranged from Man9PGlcNAc2 to Man13PGlcNAc2. Mannosyl O-glycans were not detected. Profiling studies carried out on different production batches showed that the oligosaccharide structures are similar, but their relative amounts varied with the culturing media.


Human Gene Therapy Methods | 2013

Targeted Modifications in Adeno-Associated Virus Serotype 8 Capsid Improves Its Hepatic Gene Transfer Efficiency In Vivo

Dwaipayan Sen; Rupali A. Gadkari; Govindarajan Sudha; Nishanth Gabriel; Yesupatham Sathish Kumar; Ruchita Selot; Rekha Samuel; Sumathi Rajalingam; V. Ramya; Sukesh C. Nair; Narayanaswamy Srinivasan; Alok Srivastava; Giridhara R. Jayandharan

Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T→Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S→A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (~9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector biodistribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in therapeutic gene transfer, we delivered human coagulation factor IX (h.FIX) under the control of liver-specific promoters (LP1 or hAAT) into C57BL/6 mice. The circulating levels of h.FIX:Ag were higher in all the K137R-AAV8 treated groups up to 8 weeks post-hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel AAV8 vectors for potential gene therapy of hemophilia B.


Protein Expression and Purification | 2003

Hyperexpression and purification of biologically active human luteinizing hormone and human chorionic gonadotropin using the methylotropic yeast, Pichia pastoris.

Rupali A. Gadkari; Rahul Deshpande; Rajan R. Dighe

The glycoprotein hormones, luteinizing hormone (LH), human chorionic gonadotropin (hCG), thyroid stimulating hormone (TSH), and follicle stimulating hormone (FSH), play important roles in overall physiology and reproduction. These hormones are heterodimeric molecules consisting of an identical alpha subunit non-covalently associated with the hormone-specific beta subunit. The inherent structural intricacies possessed by these hormones make them very interesting model systems for structure-function relationship studies of complex dimeric glycoproteins. The structural studies, as well as, the therapeutic applications require large quantities of biologically active hormones free of any contaminants. In this study, we report hyperexpression and purification of biologically active recombinant hLH and hCG expressed using Pichia pastoris expression system. A combination of hydrophobic interaction chromatography and ion exchange chromatography has been used to purify these recombinant hormones to homogeneity. Using a number of biochemical and immunological criteria, the recombinant hormones have been shown to be similar to the natural hormones and were equally biologically active. The preliminary data also suggested that P. pastoris cells express a low molecular weight isoform of hCG that appeared to be less glycosylated. This isoform exhibited lesser affinity for the receptor as compared to hCG, but was found to be fully biologically active.


Glycoconjugate Journal | 2008

High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains—selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG

Véronique Blanchard; Rupali A. Gadkari; Albert V.E. George; Satarupa Roy; Gerrit J. Gerwig; Bas R. Leeflang; Rajan R. Dighe; Rolf Boelens; Johannis P. Kamerling

The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, produced in P. pastoris GS115, using ammonia/glycerol-methanol as nitrogen/carbon sources, the N-glycosylation pattern of phCG, synthesized using NH4Cl/glucose–glycerol–methanol, comprised neutral and charged, phosphorylated high-mannose-type N-glycans (Man8–15GlcNAc2). However, the changed culturing protocol led to much higher amounts of glycoprotein material, which is of importance for an economical realistic approach of the aimed NMR research. In the context of these studies, attention was also paid to the site specific N-glycosylation in phCG produced in P. pastoris GS115. In contrast to the rather simple N-glycosylation pattern of phCG expressed in the GS115 strain, phCG and phFSH expressed in the X-33 strain revealed, besides neutral high-mannose-type N-glycans, also high concentrations of neutral hypermannose-type N-glycans (Manup-to-30GlcNAc2). The latter finding made the X-33 strain not very suitable for generating 15N-labeled material. Therefore, 15N-phCG was expressed in the GS115 strain using the new optimized protocol. The 15N-enrichment was evaluated by 15N-HSQC NMR spectroscopy and GLC-EI/MS. Circular dichroism studies indicated that 15N-phCG/GS115 had the same folding as urinary hCG. Furthermore, 15N-phCG/GS115 was found to be similar to the unlabeled protein in every respect as judged by radioimmunoassay, radioreceptor assays, and in vitro bioassays.


BMC Structural Biology | 2010

Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

Rupali A. Gadkari; Narayanaswamy Srinivasan

BackgroundDengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive.ResultsIn the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses.ConclusionsThus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.


Molecular and Cellular Endocrinology | 2007

The antigen binding sites of various hCG monoclonal antibodies show homology to different domains of LH receptor.

Rupali A. Gadkari; S. Sandhya; Ramanathan Sowdhamini; Rajan R. Dighe

The common feature of receptors and antibodies against the ligand is that both display very specific, high affinity binding towards the ligand. Therefore, it can be hypothesized that the paratope of antibodies may exhibit homology with distinct domains of the receptor. By locating the hormone epitopes and determining the structure of the paratopes, it should be possible to identify the contact points between the ligand and the receptor. This hypothesis has been tested using hCG monoclonal antibodies (MAbs) recognizing different epitopes and having different effects on hormone binding and response. The beta subunit and heterodimer specific antibodies inhibited both hormone binding and response, while the alpha subunit specific antibodies inhibited response without affecting binding. The single chain fragment variables (ScFvs) produced from these antibodies also retained the properties of the parent antibodies. The amino acid sequences of the ScFvs exhibited homology to different regions of the receptor; the beta subunit specific antibody being homologous to the concave surface of the leucine rich repeats (LRR) of the receptor, particularly the concave surface of the LRRs, while the heterodimer specific antibody showed homology to the hinge region. The alpha subunit specific antibody showed homology to the transmembrane domain of the receptor. The exact locations of the epitopes of the monoclonal antibodies in the hormone molecule have also been identified. The data presented here also support the model of glycoprotein hormone-receptor interaction in which the hormone binds to the extracellular domain through the beta subunit and then the alpha subunit is brought in contact with the transmembrane domain leading to signal transduction.


PLOS ONE | 2009

Recognition of Interaction Interface Residues in Low-Resolution Structures of Protein Assemblies Solely from the Positions of C alpha Atoms

Rupali A. Gadkari; Deepthi Varughese; Narayanaswamy Srinivasan

Background The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the Cα atoms which are modeled with modest accuracy. Methodology/Principal Findings In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of Cα atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of Cα. We extend the method further to recognize potential protein-protein interface residues. Conclusion/ Significance Our approach to identify buried and exposed residues solely from the positions of Cα atoms resulted in an accuracy of 84%, sensitivity of 83–89% and specificity of 67–94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70–96% and specificity of 58–94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from Cα positions and all-atom models suggested that, recognition of interfacial residues using Cα atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only Cα positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.


Scientific Reports | 2015

A novel Monoclonal Antibody against Notch1 Targets Leukemia-associated Mutant Notch1 and Depletes Therapy Resistant Cancer Stem Cells in Solid Tumors

Ankur Sharma; Rupali A. Gadkari; Satthenapalli V Ramakanth; Krishnanand Padmanabhan; Davanam Satyanarayana Madhumathi; Lakshmi A. Devi; Lingappa Appaji; Annapoorni Rangarajan; Rajan R. Dighe

Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the “Gain-of-function” mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated “opening” resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1–2 μg/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10–20 μg/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.


PLOS ONE | 2012

Protein-Protein Interactions in Clathrin Vesicular Assembly: Radial Distribution of Evolutionary Constraints in Interfaces

Rupali A. Gadkari; Narayanaswamy Srinivasan

In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of Cα atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.

Collaboration


Dive into the Rupali A. Gadkari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajan R. Dighe

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alok Srivastava

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Govindarajan Sudha

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dwaipayan Sen

Christian Medical College

View shared research outputs
Top Co-Authors

Avatar

N Srinivasan

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruchita Selot

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Satarupa Roy

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge