Rupert Abele
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rupert Abele.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Stanislav Gorbulev; Rupert Abele; Robert Tampé
The transporter associated with antigen processing (TAP) is essential for intracellular transport of protein fragments into the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. On the cell surface, these peptide–MHC complexes are monitored by cytotoxic T lymphocytes. To study the ATP hydrolysis of TAP, we developed an enrichment and reconstitution procedure, by which we fully restored TAP function in proteoliposomes. A TAP-specific ATPase activity was identified that could be stimulated by peptides and blocked by the herpes simplex virus protein ICP47. Strikingly, the peptide-binding motif of TAP directly correlates with the stimulation of the ATPase activity, demonstrating that the initial peptide-binding step is responsible for TAP selectivity. ATP hydrolysis follows Michaelis–Menten kinetics with a maximal velocity Vmax of 2 μmol/min per mg TAP, corresponding to a turnover number of approximately 5 ATP per second. This turnover rate is sufficient to account for the role of TAP in peptide loading of MHC molecules and the overall process of antigen presentation. Interestingly, sterically restricted peptides that bind but are not transported by TAP do not stimulate ATPase activity. These results point to coordinated dialogue between the peptide-binding site, the nucleotide-binding domain, and the translocation site via conformational changes within the TAP complex.
Journal of Biological Chemistry | 2001
Christoph Kyritsis; Stanislav Gorbulev; Silke Hutschenreiter; Kurt Pawlitschko; Rupert Abele; Robert Tampé
The human cytomegalovirus (HCMV) has evolved a set of elegant strategies to evade host immunity. The HCMV-encoded type I glycoprotein US6 inhibits peptide trafficking from the cytosol into the endoplasmic reticulum and subsequent peptide loading of major histocompatibility complex I molecules by blocking the transporter associated with antigen processing (TAP). We studied the molecular mechanism of TAP inhibition by US6 in vitro. By using purified US6 and human TAP co-reconstituted in proteoliposomes, we demonstrate that the isolated endoplasmic reticulum (ER)-luminal domain of US6 is essential and sufficient to block TAP-dependent peptide transport. Neither the overall amount of bound peptides nor the peptide affinity of TAP is affected by US6. Interestingly, US6 causes a specific arrest of the peptide-stimulated ATPase activity of TAP by preventing binding of ATP but not ADP. The affinity of the US6-TAP interaction was determined to 1 μm. The ER-luminal domain of US6 is monomeric in solution and consists of 19% α-helices, 25% β-sheets, and 27% β-turns. All eight cysteine residues are involved in forming a stabilizing network of four intramolecular disulfide bridges. Glycosylation of US6 is not required for function. These findings point to fascinating mechanistic and structural properties, by which specific binding of US6 at the ER-luminal loops of TAP signals across the membrane to the nucleotide-binding domains to prevent ATP hydrolysis of TAP.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Giani Oancea; Megan L. O'Mara; W. F. Drew Bennett; D. Peter Tieleman; Rupert Abele; Robert Tampé
The transporter associated with antigen processing (TAP) represents a focal point in the immune recognition of virally or malignantly transformed cells by translocating proteasomal degradation products into the endoplasmic reticulum–lumen for loading of MHC class I molecules. Based on a number of experimental data and the homology to the bacterial ABC exporter Sav1866, we constructed a 3D structural model of the core TAP complex and used it to examine the interface between the transmembrane and nucleotide-binding domains (NBD) by cysteine-scanning and cross-linking approaches. Herein, we demonstrate the functional importance of the newly identified X-loop in the NBD in coupling substrate binding to downstream events in the transport cycle. We further verified domain swapping in a heterodimeric ABC half-transporter complex by cysteine cross-linking. Strikingly, either substrate binding or translocation can be blocked by cross-linking the X-loop to coupling helix 2 or 1, respectively. These results resolve the structural arrangement of the transmission interface and point to different functions of the cytosolic loops and coupling helices in substrate binding, signaling, and transport.
FEBS Letters | 2001
Hermann Lage; Christin Perlitz; Rupert Abele; Robert Tampé; Manfred Dietel; Dirk Schadendorf; Pranav Sinha
Multidrug resistance (MDR) phenotypes have been associated with the overexpression of various members of the superfamily of ATP binding cassette (ABC) transporters. Here we demonstrate that a member of the ABC‐transporter family, the heterodimer ‘transporter associated with antigen processing’ (TAP), physiologically involved in major histocompatibility complex class I‐restricted antigen presentation, is significantly overexpressed in the human gastric carcinoma cell line EPG85‐257RNOV exhibiting a mitoxantrone‐resistant phenotype. This tumor cell line shows an atypical MDR phenotype in the absence of ‘P‐glycoprotein’ or ‘MDR‐associated protein’ overexpression but with an enforced ‘breast cancer resistance protein’ expression level. Transfection of both TAP subunits encoding cDNA molecules, TAP1 and TAP2, into the drug‐sensitive parental gastric carcinoma cell line EPG85‐257P conferred a 3.3‐fold resistance to mitoxantrone but not to alternative anti‐neoplastic agents. Furthermore, cell clones transfected with both, but not singularly expressed TAP1 or TAP2, reduced cellular mitoxantrone accumulation. Taken together, the data suggest that the heterodimeric TAP complex possesses characteristics of a xenobiotic transporter and that the TAP dimer contributes to the atypical MDR phenotype of human cancer cells.
Journal of Biological Chemistry | 2005
Justina C. Wolters; Rupert Abele; Robert Tampé
The transporter associated with antigen processing (TAP)-like (TAPL, ABCB9) belongs to the ATP-binding cassette transporter family, which translocates a vast variety of solutes across membranes. The function of this half-size transporter has not yet been determined. Here, we show that TAPL forms a homodimeric complex, which translocates peptides across the membrane. Peptide transport strictly requires ATP hydrolysis. The transport follows Michaelis-Menten kinetics with low affinity and high capacity. Different nucleotides bind and energize the transport with a slight predilection for purine bases. The peptide specificity is very broad, ranging from 6-mer up to at least 59-mer peptides with a preference for 23-mers. Peptides are recognized via their backbone, including the free N and C termini as well as side chain interactions. Although related to TAP, TAPL is unique as far as its interaction partners, transport properties, and substrate specificities are concerned, thus excluding that TAPL is part of the peptide-loading complex in the classic route of antigen processing via major histocompatibility complex class I molecules.
FEBS Letters | 2006
Rupert Abele; Robert Tampé
The transporter associated with antigen processing (TAP) is a key factor of the major histocompatibility complex (MHC) class I antigen presentation pathway. This ABC transporter translocates peptides derived mainly from proteasomal degradation from the cytosol into the ER lumen for loading onto MHC class I molecules. Manifold mechanisms have evolved to regulate TAP activity. During infection, TAP expression is upregulated by interferon‐γ. Furthermore, the assembly and stability of the transport complex is promoted by various auxiliary factors. However, tumors and viruses have developed sophisticated strategies to escape the immune surveillance by suppressing TAP function. The activity of TAP can be impaired on the transcriptional or translational level, by enhanced degradation or by inhibition of peptide translocation. In this review, we briefly summarize existing data concerning the regulation of the TAP complex.
Nature Communications | 2014
Nina Grossmann; Ahmet Selim Vakkasoglu; Sabine Hulpke; Rupert Abele; Rachelle Gaudet; Robert Tampé
The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the conserved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. Our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Meike Herget; Christoph Baldauf; Christian Scholz; David Parcej; Karl-Heinz Wiesmüller; Robert Tampé; Rupert Abele; Enrica Bordignon
The ATP-binding cassette transporter associated with antigen processing (TAP) plays a key role in the adaptive immune defense against infected or malignantly transformed cells by translocating proteasomal degradation products into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. The broad substrate spectrum of TAP, rendering peptides from 8 to 40 residues, including even branched or modified molecules, suggests an unforeseen structural flexibility of the substrate-binding pocket. Here we used EPR spectroscopy to reveal conformational details of the bound peptides. Side-chain dynamics and environmental polarity were derived from covalently attached 2,2,5,5-tetramethylpyrrolidine-1-oxyl spin probes, whereas 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid spin-labeled peptides were used to detect backbone properties. Dependent on the spin probe’s position, striking differences in affinity, dynamics, and polarity were found. The side-chains’ mobility was strongly restricted at the ends of the peptide, whereas the central region was flexible, suggesting a central peptide bulge. In the end, double electron electron resonance allowed the determination of intrapeptide distances in doubly labeled peptides bound to TAP. Simulations based on a rotamer library led to the conclusion that peptides bind to TAP in an extended kinked structure, analogous to those bound to MHC class I proteins.
Journal of Structural Biology | 2010
Friederike Junge; Laura M. Luh; Davide Proverbio; Birgit Schäfer; Rupert Abele; Michael Beyermann; Volker Dötsch; Frank Bernhard
G-protein coupled receptors still represent one of the most challenging targets in membrane protein research. Here we present a strategic approach for the cell-free synthesis of these complex membrane proteins exemplified by the preparative scale production of the human endothelin A receptor. The versatility of the cell-free expression system was used to modulate sample quality by alteration of detergents hence presenting different solubilization environments to the synthesized protein at different stages of the production process. Sample properties after co-translational and post-translational solubilization have been analysed by evaluation of homogeneity, protein stability and receptor ligand binding competence. This is a first quality evaluation of a membrane protein obtained in two different cell-free expression modes and we demonstrate that both can be used for the production of ligand-binding competent endothelin A receptor in quantities sufficient for structural approaches. The presented strategy of cell-free expression protocol development could serve as basic guideline for the production of related receptors in similar systems.
Journal of Biological Chemistry | 2006
Meike Herget; Giani Oancea; Susanne Schrodt; Michael Karas; Robert Tampé; Rupert Abele
By translocating proteasomal degradation products into the endoplasmic reticulum for loading of major histocompatibility complex I molecules, the ABC transporter TAP plays a focal role in the adaptive immunity against infected or malignantly transformed cells. A key question regarding the transport mechanism is how the quality of the incoming peptide is detected and how this information is transmitted to the ATPase domains. To identify residues involved in this process, we evolved a Trojan horse strategy in which a small artificial protease is inserted into antigenic epitopes. After binding, the TAP backbone in contact is cleaved, allowing the peptide sensor site to be mapped by mass spectrometry. Within this sensor site, we identified residues that are essential for tight coupling of peptide binding and transport. This sensor and transmission interface is restructured during the ATP hydrolysis cycle, emphasizing its important function in the cross-talk between the transmembrane and the nucleotide-binding domains. This allocrite sensor may be similarly positioned in other members of the ABC exporter family.