Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rupert J. Russell is active.

Publication


Featured researches published by Rupert J. Russell.


Nature | 2008

Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants.

Patrick J. Collins; Lesley F. Haire; Yi Pu Lin; Junfeng Liu; Rupert J. Russell; Philip A. Walker; John J. Skehel; Stephen R. Martin; Alan J. Hay; Steven J. Gamblin

The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion

Rupert J. Russell; Philip S. Kerry; David J. Stevens; David A. Steinhauer; Stephen R. Martin; Steven John Gamblin; John J. Skehel

The influenza surface glycoprotein hemagglutinin (HA) is a potential target for antiviral drugs because of its key roles in the initial stages of infection: receptor binding and the fusion of virus and cell membranes. The structure of HA in complex with a known inhibitor of membrane fusion and virus infectivity, tert-butyl hydroquinone (TBHQ), shows that the inhibitor binds in a hydrophobic pocket formed at an interface between HA monomers. Occupation of this site by TBHQ stabilizes the neutral pH structure through intersubunit and intrasubunit interactions that presumably inhibit the conformational rearrangements required for membrane fusion. The nature of the binding site suggests routes for the chemical modification of TBHQ that could lead to the development of more potent inhibitors of membrane fusion and potential anti-influenza drugs.


Trends in Microbiology | 2008

Evolving complexities of influenza virus and its receptors

John M. Nicholls; Renee W. Y. Chan; Rupert J. Russell; Gillian M. Air; J. S. Malik Peiris

Sialic acids (Sias) are regarded as receptors for influenza viruses and are usually bound to galactose (Gal) in an alpha2-3 or alpha2-6 configuration. The detection of these Sia configurations in tissues has commonly been through the use of plant lectins that are able to identify which cells contain Siaalpha2-3- and Siaalpha2-6-linked glycans, although other techniques for receptor distribution have been used. Initial experiments indicated that avian versus human influenza virus binding was determined by either Siaalpha2-6 or Siaalpha2-3 expression. In this review, we suggest that the distribution and detection of these terminal Siaalpha2-3- and Siaalpha2-6-linked receptors within the respiratory tract might not be as clear cut as has been reported. We will also review how other viral and receptor components might act as determinants for successful viral replication and transmission. Understanding these additional components is important in comprehending the infection and the transmission of both existing human influenza viruses and newly emerging avian influenza viruses.


Journal of Virology | 2004

Molecular Determinants within the Surface Proteins Involved in the Pathogenicity of H5N1 Influenza Viruses in Chickens

Diane J. Hulse; Robert G. Webster; Rupert J. Russell; Daniel R. Perez

ABSTRACT Although it is established that the cleavage site and glycosylation patterns in the hemagglutinin (HA) play important roles in determining the pathogenicity of H5 avian influenza viruses, some viruses exist that are not highly pathogenic despite possessing the known characteristics of high pathogenicity (i.e., their HA contains multiple basic amino acids at the cleavage site and has glycosylation patterns similar to that of the highly pathogenic H5 viruses). Currently little is known about the H5N1 viruses that fall into this intermediate category of pathogenicity. We have identified strains of H5N1 avian influenza viruses that have markers typical of high pathogenicity but distinctly differ in their ability to cause disease and death in chickens. By analyzing viruses constructed by reverse-genetic methods and containing recombinant HAs, we established that amino acids 97, 108, 126, 138, 212, and 217 of HA, in addition to those within the cleavage site, affect pathogenicity. Further investigation revealed that an additional glycosylation site within the neuraminidase (NA) protein globular head contributed to the high virulence of the H5N1 virus. Our findings are in agreement with previous observations that suggest that the activities of the HA and NA proteins are functionally linked.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957

Junfeng Liu; David J. Stevens; Lesley F. Haire; Philip A. Walker; Peter J. Coombs; Rupert J. Russell; Steven J. Gamblin; John J. Skehel

The viruses that caused the three influenza pandemics of the twentieth century in 1918, 1957, and 1968 had distinct hemagglutinin receptor binding glycoproteins that had evolved the capacity to recognize human cell receptors. We have determined the structure of the H2 hemagglutinin from the second pandemic, the “Asian Influenza” of 1957. We compare it with the 1918 “Spanish Influenza” hemagglutinin, H1, and the 1968 “Hong Kong Influenza” hemagglutinin, H3, and show that despite its close overall structural similarity to H1, and its more distant relationship to H3, the H2 receptor binding site is closely related to that of H3 hemagglutinin. By analyzing hemagglutinins of potential H2 avian precursors of the pandemic virus, we show that the human receptor can be bound by avian hemagglutinins that lack the human–specific mutations of H2 and H3 pandemic viruses, Gln-226Leu, and Gly-228Ser. We show how Gln-226 in the avian H2 receptor binding site, together with Asn-186, form hydrogen bond networks through bound water molecules to mediate binding to human receptor. We show that the human receptor adopts a very similar conformation in both human and avian hemagglutinin-receptor complexes. We also show that Leu-226 in the receptor binding site of human virus hemagglutinins creates a hydrophobic environment near the Sia-1-Gal-2 glycosidic linkage that favors binding of the human receptor and is unfavorable for avian receptor binding. We consider the significance for the development of pandemics, of the existence of avian viruses that can bind to both avian and human receptors.


The EMBO Journal | 2002

Structure of Alba: an archaeal chromatin protein modulated by acetylation

Benjamin N. Wardleworth; Rupert J. Russell; Stephen D. Bell; Garry L. Taylor; Malcolm F. White

Eukaryotic DNA is packaged into nucleosomes that regulate the accessibility of the genome to replication, transcription and repair factors. Chromatin accessibility is controlled by histone modifications including acetylation and methylation. Archaea possess eukary otic‐like machineries for DNA replication, transcription and information processing. The conserved archaeal DNA binding protein Alba (formerly Sso10b) interacts with the silencing protein Sir2, which regulates Albas DNA binding affinity by deacetylation of a lysine residue. We present the crystal structure of Alba from Sulfolobus solfataricus at 2.6 Å resolution (PDB code 1h0x). The fold is reminiscent of the N‐terminal DNA binding domain of DNase I and the C‐terminal domain of initiation factor IF3. The Alba dimer has two extended β‐hairpins flanking a central body containing the acetylated lysine, Lys16, suggesting three main points of contact with the DNA. Fluorescence, calorimetry and electrophoresis data suggest a final binding stoichiometry of ∼5 bp DNA per Alba dimer. We present a model for the Alba–DNA interaction consistent with the available structural, biophysical and electron microscopy data.


Journal of Virology | 2002

Probing the Sialic Acid Binding Site of the Hemagglutinin-Neuraminidase of Newcastle Disease Virus: Identification of Key Amino Acids Involved in Cell Binding, Catalysis, and Fusion

Helen Connaris; Toru Takimoto; Rupert J. Russell; Susan J. Crennell; Ibrahim M. Moustafa; Allen Portner; Garry L. Taylor

ABSTRACT We recently reported the first crystal structure of a paramyxovirus hemagglutinin-neuraminidase (HN) from Newcastle disease virus. This multifunctional protein is responsible for binding to cellular sialyl-glycoconjugate receptors, promotion of fusion through interaction with the second viral surface fusion (F) glycoprotein, and processing progeny virions by removal of sialic acid from newly synthesized viral coat proteins. Our structural studies suggest that HN possesses a single sialic acid recognition site that can be switched between being a binding site and a catalytic site. Here we examine the effect of mutation of several conserved amino acids around the binding site on the hemagglutination, neuraminidase, and fusion functions of HN. Most mutations around the binding site result in loss of neuraminidase activity, whereas the effect on receptor binding is more variable. Residues E401, R416, and Y526 appear to be key for receptor binding. The increase in fusion promotion seen in some mutants that lack receptor binding activity presents a conundrum. We propose that in these cases HN may be switched into a fusion-promoting state through a series of conformational changes that propagate from the sialic acid binding site through to the HN dimer interface. These results further support the single-site model and suggest certain residues to be important for the triggering of fusion.


Vaccine | 2009

Structural basis for oseltamivir resistance of influenza viruses.

Patrick J. Collins; Lesley F. Haire; Yi Pu Lin; Junfeng Liu; Rupert J. Russell; Philip A. Walker; Stephen R. Martin; Rodney S. Daniels; Vicky Gregory; John J. Skehel; Steve J. Gamblin; Alan J. Hay

Oseltamivir, one of the two anti-neuraminidase drugs, is currently the most widely used drug against influenza. Resistance to the drug has occurred infrequently among different viruses in response to drug treatment, including A H5N1 viruses, but most notably has emerged among recently circulating A H1N1 viruses and has spread throughout the population in the absence of drug use. Crystal structures of enzyme-drug complexes, together with enzymatic properties, of mutants of H5N1 neuraminidase have provided explanations for high level oseltamivir resistance due to the common H275Y mutation, with retention of zanamivir susceptibility, and intermediate level resistance due to the N295S mutation. Complementation of enhanced NA activity due to a D344N mutation by the H275Y mutation suggests an explanation for the recent emergence and predominance of oseltamivir-resistant influenza A H1N1 viruses.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein

Benjamin G. Hale; Philip S. Kerry; David C. Jackson; B. Precious; Alexander Gray; Marian J. Killip; Richard E. Randall; Rupert J. Russell

Seasonal epidemics and periodic worldwide pandemics caused by influenza A viruses are of continuous concern. The viral nonstructural (NS1) protein is a multifunctional virulence factor that antagonizes several host innate immune defenses during infection. NS1 also directly stimulates class IA phosphoinositide 3-kinase (PI3K) signaling, an essential cell survival pathway commonly mutated in human cancers. Here, we present a 2.3-Å resolution crystal structure of the NS1 effector domain in complex with the inter-SH2 (coiled-coil) domain of p85β, a regulatory subunit of PI3K. Our data emphasize the remarkable isoform specificity of this interaction, and provide insights into the mechanism by which NS1 activates the PI3K (p85β:p110) holoenzyme. A model of the NS1:PI3K heterotrimeric complex reveals that NS1 uses the coiled-coil as a structural tether to sterically prevent normal inhibitory contacts between the N-terminal SH2 domain of p85β and the p110 catalytic subunit. Furthermore, in this model, NS1 makes extensive contacts with the C2/kinase domains of p110, and a small acidic α-helix of NS1 sits adjacent to the highly basic activation loop of the enzyme. During infection, a recombinant influenza A virus expressing NS1 with charge-disruption mutations in this acidic α-helix is unable to stimulate the production of phosphatidylinositol 3,4,5-trisphosphate or the phosphorylation of Akt. Despite this, the charge-disruption mutations in NS1 do not affect its ability to interact with the p85β inter-SH2 domain in vitro. Overall, these data suggest that both direct binding of NS1 to p85β (resulting in repositioning of the N-terminal SH2 domain) and possible NS1:p110 contacts contribute to PI3K activation.


Virology | 2008

Structure of an avian influenza A virus NS1 protein effector domain.

Benjamin G. Hale; Wendy S. Barclay; Richard E. Randall; Rupert J. Russell

Influenza A virus NS1 protein is a multifunctional virulence factor. Here, we report a crystal structure for the NS1 effector domain of avian influenza virus A/Duck/Albany/76. Comparison of this structure with that reported for a human strain shows both proteins share a common monomer conformation, albeit with subtle differences. Strikingly, our data reveal a novel helix-helix dimeric interface between monomers of the avian NS1 protein, which is also found in the human NS1 crystal lattice. We re-evaluate the current model of NS1 dimeric assembly, and provide biochemical evidence to show tryptophan-187 (a residue located at the helix-helix interface) is essential for dimerization of this effector domain.

Collaboration


Dive into the Rupert J. Russell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graeme S. Bell

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge