Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rupert L. Hough is active.

Publication


Featured researches published by Rupert L. Hough.


Plant and Soil | 2005

Evaluating a free ion activity model applied to metal uptake by Lolium perenne L. grown in contaminated soils.

Rupert L. Hough; A.M. Tye; N.M.J. Crout; Steve P. McGrath; Hao Zhang; Scott D. Young

We investigated several formulations of the ‘free ion activity model’ (FIAM) as a means of describing plant uptake of soil Cd and Zn from contaminated soils. Lolium perenne was grown on a range of urban and metal-spiked agricultural soils selected to provide a wide range of Cd and Zn concentrations, pH values and other physico-chemical properties. Plants were grown under controlled conditions and above-ground biomass was harvested at regular intervals. Concentrations of Cd and Zn in the grass were compared with estimates of metal ‘capacity’ (total or radio-labile metal content in the soil) and ‘intensity’ (metal concentration in the soil solution or free divalent ion activity). The results suggested that ‘capacity’ terms alone were poor predictors of plant metal uptake (r2 values between 0.001 and 0.43), while metal ion ‘intensity’ provided quite reasonable predictions of the variation observed for several harvests of the grass (r2=0.60–0.87). Soil solution-to-plant transfer factors were highly pH-dependent which may suggest significant competition between trace metals and protons for sorption sites on roots. However, resolution of this question was confounded because of the strong co-variance between pH and p(M2+) in the soil pore water. Thus the influence of pH could not be separated from the effect of changing metal ion activity on uptake rate. Other possible effects on metal uptake such as dilution from increased biomass during growth and competition for uptake between different metal ions (Zn vs. Cd), or with Ca2+, appeared to play very minor roles in determining bioavailability. Several formulations of the FIAM failed to provide a consistently superior prediction of metal uptake when compared to purely empirical regression with pH and p(M2+) within the range of the data used to parameterise the models.


Environmental Health Perspectives | 2012

Inorganic arsenic and basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study

Giovanni Leonardi; Marie Vahter; Felicity Clemens; Walter Goessler; Eugen Gurzau; Kari Hemminki; Rupert L. Hough; Kvetoslava Koppova; Rajiv Kumar; Peter Rudnai; Simona Surdu; Tony Fletcher

Background: Inorganic arsenic (iAs) is a potent carcinogen, but there is a lack of information about cancer risk for concentrations < 100 μg/L in drinking water. Objectives: We aimed to quantify skin cancer relative risks in relation to iAs exposure < 100 μg/L and the modifying effects of iAs metabolism. Methods: The Arsenic Health Risk Assessment and Molecular Epidemiology (ASHRAM) study, a case–control study, was conducted in areas of Hungary, Romania, and Slovakia with reported presence of iAs in groundwater. Consecutively diagnosed cases of basal cell carcinoma (BCC) of the skin were histologically confirmed; controls were general surgery, orthopedic, and trauma patients who were frequency matched to cases by age, sex, and area of residence. Exposure indices were constructed based on information on iAs intake over the lifetime of participants. iAs metabolism status was classified based on urinary concentrations of methylarsonic acid (MA) and dimethylarsinic acid (DMA). Associations were estimated by multivariable logistic regression. Results: A total of 529 cases with BCC and 540 controls were recruited for the study. BCC was positively associated with three indices of iAs exposure: peak daily iAs dose rate, cumulative iAs dose, and lifetime average water iAs concentration. The adjusted odds ratio per 10-μg/L increase in average lifetime water iAs concentration was 1.18 (95% confidence interval: 1.08, 1.28). The estimated effect of iAs on cancer was stronger in participants with urinary markers indicating incomplete metabolism of iAs: higher percentage of MA in urine or a lower percentage of DMA. Conclusion: We found a positive association between BCC and exposure to iAs through drinking water with concentrations < 100 μg/L.


Critical Reviews in Environmental Science and Technology | 2007

Weathered Hydrocarbon Wastes: A Risk Management Primer

Kirsty J. Brassington; Rupert L. Hough; Graeme I. Paton; Kirk T. Semple; Graeme Risdon; J. Crossley; I. Hay; K. Askari; Simon J. T. Pollard

We provide a primer and critical review of the characterization, risk assessment, and bioremediation of weathered hydrocarbons. Historically the remediation of soil contaminated with petroleum hydrocarbons has been expressed in terms of reductions in total petroleum hydrocarbon (TPH) load rather than reductions in risk. There are several techniques by which petroleum hydrocarbons in soils can be characterized. Method development is often driven by the objectives of published risk assessment frameworks. Some frameworks stipulate analysis of a wide range of petroleum hydrocarbons; for example, the United Kingdom (UK) approach suggests compounds from EC5 to EC70 be examined. Methods for the extraction of petroleum hydrocarbons from soil samples have been reviewed extensively in the open literature. Although various extraction and analytical methods are available for petroleum hydrocarbons, their results suffer from inter-method variation, with gas chromatography methods being used widely. Currently, the implications for risk assessment are uncertain. Bioremediation works well for remediating soils contaminated with petroleum hydrocarbons. As a result, the optimization of environmental conditions is imperative. For petroleum hydrocarbons in soil, international regulatory guidance on the management of risks from contaminated sites is now emerging. There is also growing support for the move toward compound-specific risk-based approaches for the assessment of hydrocarbon-contaminated land.


Environmental Geochemistry and Health | 2008

Urban geochemistry: research strategies to assist risk assessment and remediation of brownfield sites in urban areas.

Iain Thornton; Margaret E. Farago; Catherine R. Thums; Randall R. Parrish; Rona A. R. McGill; N. Breward; Neil Fortey; P. R. Simpson; Scott D. Young; A.M. Tye; N.M.J. Crout; Rupert L. Hough; John Watt

Urban geochemical maps of Wolverhampton and Nottingham, based on multielement analysis of surface soils, have shown distribution patterns of “total” metals concentrations relating to past and present industrial and domestic land use and transport systems. Several methods have been used to estimate the solubility and potential bioavailability of metals, their mineral forms and potential risks to urban population groups. These include sequential chemical extraction, soil pore water extraction and analysis, mineralogical analysis by scanning electron microscopy, source apportionment by lead isotope analysis and the development of models to predict metal uptake by homegrown vegetables to provide an estimate of risk from metal consumption and exposure. The results from these research strategies have been integrated with a geographical information system (GIS) to provide data for future land-use planning.


Biodiversity and Conservation | 2014

Biodiversity and human health: evidence for causality?

Rupert L. Hough

The Millennium Ecosystem Assessment and other commentators have warned about the impacts that biodiversity decline will have on human health. There is no doubting that the natural world provides mankind with the majority of the resources required to sustain life and health. Many species provide food, fuel, medicines; with the potential for many more (as of yet) undiscovered uses for various species. Despite this, there have been very few attempts to actually investigate relationships between biodiversity (i.e. number of species, rather than the ability of specific species to provide health benefits) and human health. This paper reviews the available evidence and demonstrates that while the links between biodiversity and health seem intuitive, they are very difficult to prove. Socio-economics has a huge influence on health status and the exploitation of natural resources (leading to eventual biodiversity loss) tends to have a positive economic effects. More direct effects of biodiversity on health include the diversity of the internal microbiome, the effect of natural diversity on our mental health and well-being (although this has large social aspects with many people feeling fearful in very diverse environments). Still to be elucidated are the tipping points where the level of global biodiversity loss is such that human health can no longer be sustained.


Chemosphere | 2008

Fugacity modelling to predict the distribution of organic contaminants in the soil: oil matrix of constructed biopiles.

Simon J. T. Pollard; Rupert L. Hough; Kye-Hoon Kim; Jessica Bellarby; Graeme I. Paton; Kirk T. Semple; Frédéric Coulon

Level I and II fugacity approaches were used to model the environmental distribution of benzene, anthracene, phenanthrene, 1-methylphenanthrene and benzo[a]pyrene in a four phase biopile system, accounting for air, water, mineral soil and non-aqueous phase liquid (oil) phase. The non-aqueous phase liquid (NAPL) and soil phases were the dominant partition media for the contaminants in each biopile and the contaminants differed markedly in their individual fugacities. Comparison of three soils with different percentage of organic carbon (% org C) showed that the % org C influenced contaminant partitioning behaviour. While benzene showed an aqueous concentration worthy of note for leachate control during biopiling, other organic chemicals showed that insignificant amount of chemicals leached into the water, greatly reducing the potential extent of groundwater contamination. Level II fugacity model showed that degradation was the dominant removal process except for benzene. In all three biopile systems, the rate of degradation of benzo(a)pyrene was low, requiring more than 12 years for soil concentrations from a spill of about 25 kg (100 mol) to be reduced to a concentration of 0.001 microgg(-1). The removal time of 1-methylphenanthrene and either anthracene or phenanthrene was about 1 and 3 years, respectively. In contrast, benzene showed the highest degradation rate and was removed after 136 days in all biopile systems. Overall, this study confirms the association of risk critical contaminants with the residual saturation in treated soils and reinforces the importance of accounting for the partitioning behaviour of both NAPL and soil phases during the risk assessment of oil-contaminated sites.


Science of The Total Environment | 2015

A study on temporal trends and estimates of fate of Bisphenol A in agricultural soils after sewage sludge amendment

Zulin Zhang; Morgane Le Velly; Stewart M. Rhind; Carol E. Kyle; Rupert L. Hough; E. I. Duff; Craig McKenzie

Temporal concentration trends of BPA in soils were investigated following sewage sludge application to pasture (study 1: short term sludge application; study 2: long term multiple applications over 13 years). The background levels of BPA in control soils were similar, ranging between 0.67-10.57 ng g(-1) (mean: 3.02 ng g(-1)) and 0.51-6.58 ng g(-1) (mean: 3.22 ng g(-1)) for studies 1 and 2, respectively. Concentrations in both treated and control plots increased over the earlier sampling times of the study to a maximum and then decreased over later sampling times, suggesting other sources of BPA to both the treated and control soils over the study period. In study 1 there was a significant treatment effect of sludge application in the autumn (p=0.002) although no significant difference was observed between treatment and control soils in the spring. In study 2 treated soils contained considerably higher BPA concentrations than controls ranging between 12.89-167.9 ng g(-1) (mean: 63.15 ng g(-1)). This and earlier studies indicate the long-term accumulation of multiple contaminants by multiple sewage sludge applications over a prolonged period although the effects of the presence of such contaminant mixtures have not yet been elucidated. Fugacity modelling was undertaken to estimate partitioning of Bisphenol A (soil plus sewage: pore water: soil air partitioning) and potential uptake into a range of food crops. While Bisphenol A sorbs strongly to the sewage-amended soil, 4% by mass was predicted to enter soil pore water resulting in significant uptake by crops particularly leafy vegetables (3.12-75.5 ng g(-1)), but also for root crops (1.28-31.0 ng g(-1)) with much lower uptake into cereal grains (0.62-15.0 ng g(-1)). This work forms part of a larger programme of research aimed at assessing the risks associated with the long-term application of sewage sludge to agricultural soils.


Science of The Total Environment | 2012

Prevalence and survival of potential pathogens in source-segregated green waste compost

Lisa M. Avery; Philippa Booth; Colin D. Campbell; David Tompkins; Rupert L. Hough

Composting of source-separated green waste (SSGW) is essential to meet the EU Landfill Directive target and agricultural land is considered a significant market for the resulting composts. A critical review of the literature was performed to evaluate the potential for pathogens to enter the composting process via SSGW feedstocks and the likelihood of their survival of the composting process and subsequent application to land. This is discussed in the context of application of other organic wastes to land. It was concluded that zoonoses such as verotoxigenic Escherichia coli and Salmonella spp. are unlikely to survive and effective composting process, whereas spore forming organisms are more resistant to composting but are also ubiquitous in the environment. Adherence to existing guidelines, such as those for farm yard manures, is likely to provide a rational degree of health protection for humans and livestock.


Waste Management | 2012

Risk assessment of the use of PAS100 green composts in sheep and cattle production in Scotland

Rupert L. Hough; Philippa Booth; Lisa M. Avery; Stewart M. Rhind; Colin Crews; Jeffrey R. Bacon; Colin D. Campbell; David Tompkins

A generalized quantitative risk assessment for the use of source-segregated green waste (SSGW) compost use in livestock production is presented. This assessment focussed on potential risks associated with a specific product, PAS100 compost that meets the UK publicly available specification 100 and represents the majority of compost available for use in extensive Scottish livestock systems. A hazard screening approach was used to identify all potentially hazardous agents present in compost. A total of 497 potentially hazardous agents were screened, with 147 finally put forward for quantitative risk assessment. Scenarios modelled in the assessment included surface application of compost to grazing land and also incorporation into soil and subsequent uptake by fodder crops. Risk estimates were compared to those associated with six comparator materials, including various sludges, slurries and farm yard manures. Overall, five potentially hazardous agents (PCB28, PCB138, PCB153, 1,2,3,4,6,7,8-HpCDD, Clopyralid) returned a hazard quotient >1 but within margins of uncertainty, indicating that further investigation may be required. Within the limitations of available information, SSGW compost was found to pose less risk to grazing livestock, or the environment, than other commonly-used soil amendments. While this assessment relates to a specific product/standard used in the UK, the methodology could easily be applied to other composts/products/situations. Therefore these results have wider applicability.


Critical Reviews in Microbiology | 2015

Environmental risk factors in the incidence of Johne’s disease

Geoffrey N. Elliott; Rupert L. Hough; Lisa M. Avery; Charlotte Maltin; Colin D. Campbell

Abstract This review addresses the survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP), the causative pathogen of Johne’s disease (JD), once it has left its ruminant host. JD has significant economic impact on dairy, beef and sheep industries and is difficult to control due to the long-term sub-clinical nature of the infection, intermittent or persistent MAP shedding during and after this period, inadequate test effectiveness, and the potential for MAP to exist for extended periods outside the host. The role that environmental factors play in the persistence and spread of MAP and consequent disease is assessed. Published risk factor analysis, organism survival across various environmental media and conditions, presence and spread in ruminant and non-ruminant wildlife, and the general potential for survival and multiplication of MAP ex-host both on and off-farm are discussed and knowledge gaps highlighted. An inclusive approach to disease management that takes into account the persistence and transport of the causative organism in on-farm soils and waters, land use and management, dispersal by domestic and non-domestic host species, as well as general animal husbandry is required on those farms where more traditional approaches to disease management have failed to reduce disease prevalence.

Collaboration


Dive into the Rupert L. Hough's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugen Gurzau

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Rudnai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge