Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruslan Belikov is active.

Publication


Featured researches published by Ruslan Belikov.


The Astrophysical Journal | 2013

High performance Lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures

Olivier Guyon; Philip Hinz; Eric Cady; Ruslan Belikov; Frantz Martinache

Two high-performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, called Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, called Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-λ/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope, Thirty Meter Telescope, the European Extremely Large Telescope, and the Large Binocular Telescope. Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.


Optics Express | 2007

Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems

Amir Give'on; Ruslan Belikov; Stuart B. Shaklan; Jeremy Kasdin

High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(-10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.


Proceedings of SPIE | 2012

Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems

Dimitri Mawet; Laurent Pueyo; Peter R. Lawson; Laurent M. Mugnier; Wesley A. Traub; A. Boccaletti; John T. Trauger; Szymon Gladysz; Eugene Serabyn; J. Milli; Ruslan Belikov; Markus Kasper; Pierre Baudoz; Bruce A. Macintosh; Christian Marois; Ben R. Oppenheimer; Harrisson H. Barrett; Jean-Luc Beuzit; Nicolas Devaney; J. H. Girard; Olivier Guyon; John E. Krist; B. Mennesson; David Mouillet; Naoshi Murakami; Lisa A. Poyneer; Dmitri Savransky; Christophe Verinaud; James K. Wallace

Small-angle coronagraphy is technically and scientifically appealing because it enables the use of smaller telescopes, allows covering wider wavelength ranges, and potentially increases the yield and completeness of circumstellar environment – exoplanets and disks – detection and characterization campaigns. However, opening up this new parameter space is challenging. Here we will review the four posts of high contrast imaging and their intricate interactions at very small angles (within the first 4 resolution elements from the star). The four posts are: choice of coronagraph, optimized wavefront control, observing strategy, and post-processing methods. After detailing each of the four foundations, we will present the lessons learned from the 10+ years of operations of zeroth and first-generation adaptive optics systems. We will then tentatively show how informative the current integration of second-generation adaptive optics system is, and which lessons can already be drawn from this fresh experience. Then, we will review the current state of the art, by presenting world record contrasts obtained in the framework of technological demonstrations for space-based exoplanet imaging and characterization mission concepts. Finally, we will conclude by emphasizing the importance of the cross-breeding between techniques developed for both ground-based and space-based projects, which is relevant for future high contrast imaging instruments and facilities in space or on the ground.


IEEE Journal of Selected Topics in Quantum Electronics | 2004

Micromechanical gratings for visible and near-infrared spectroscopy

H. Sagberg; Matthieu Lacolle; Ib-Rune Johansen; O. Lvhaugen; Ruslan Belikov; Olav Solgaard; A.S. Sudb

We present a micromechanical grating array that acts as a configurable optical filter for low-cost and compact visible and near-infrared spectrometric sensors. We show how the grating array can be used either as a fast scanning monochromator or as a diffractive filter, and that the expected signal-to-noise ratio is approximately equal for the two modes of measurement. The free spectral range of the filter can be matched to a defined spectral measurement region, so that we can optimize the relationship between spectral resolution and electromechanical complexity. We have numerically studied diffraction efficiency and errors in filter shape. Finally, we fabricated a small configurable grating array and present measurement results that demonstrate electrostatic filter modulation.


Publications of the Astronomical Society of the Pacific | 2010

High-Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation

Olivier Guyon; Eugene Pluzhnik; Frantz Martinache; Julien Totems; Shinichiro Tanaka; Taro Matsuo; Celia Blain; Ruslan Belikov

The Phase-Induced Amplitude Apodization (PIAA) coronagraph is a high-performance coronagraph concept able to work at small angular separation with little loss in throughput. We present results obtained with a laboratory PIAA system including active wavefront control. The system has a 94.3% throughput (excluding coating losses) and operates in air with monochromatic light. Our testbed achieved a 2.27 × 10-7 raw contrast between 1.65λ/D (inner working angle of the coronagraph configuration tested) and 4.4λ/D (outer working angle). Through careful calibration, we were able to separate this residual light into a dynamic coherent component (turbulence, vibrations) at 4.5 × 10-8 contrast and a static incoherent component (ghosts and/or polarization mismatch) at 1.6 × 10-7 contrast. Pointing errors are controlled at the 10-3λ/D level using a dedicated low-order wavefront sensor. While not sufficient for direct imaging of Earthlike planets from space, the 2.27 × 10-7 raw contrast achieved already exceeds requirements for a ground-based extreme adaptive optics system aimed at direct detection of more massive exoplanets. We show that over a 4 hr period, averaged wavefront errors have been controlled to the 3.5 × 10-9 contrast level. This result is particularly encouraging for ground-based extreme-AO systems relying on long-term stability and absence of static wavefront errors to recover planets much fainter than the fast boiling speckle halo.


Optics Letters | 2003

Optical wavelength filtering by diffraction from a surface relief.

Ruslan Belikov; Olav Solgaard

We present an analytical solution to the problem of finding a diffractive surface relief that generates a specific optical amplitude and phase spectral reflection in a particular direction. We show that any discrete finite impulse response filter can be generated to within a multiplicative constant at nonzero frequencies. We propose an implementation of such a filter that works in the visible and the near infrared, based on a two-dimensional array of dual-state tiltable mirrors. A 1024 x 1024 array results in a 1024-tap filter with 10-bit quantization of the impulse response. The applications of such a device include spectroscopy and wavelength-division multiplex switching.


Proceedings of SPIE | 2010

ACCESS – A Concept Study for the Direct Imaging and Spectroscopy of Exoplanetary Systems

John T. Trauger; Karl R. Stapelfeldt; Wesley A. Traub; John E. Krist; Dwight Moody; Dimitri Mawet; Eugene Serabyn; Curtis Henry; Paul B. Brugarolas; James W. Alexander; Robert O. Gappinger; Olivia R. Dawson; Virgil Mireles; Peggy Park; Laurent Pueyo; Stuart B. Shaklan; Olivier Guyon; Jeremy Kasdin; Robert J. Vanderbei; David N. Spergel; Ruslan Belikov; Geoffrey W. Marcy; Robert A. Brown; Jean Schneider; Bruce E. Woodgate; Robert Egerman; Gary Matthews; Jason Elias; Yves Conturie; Phillip Vallone

ACCESS is one of four medium-class mission concepts selected for study in 2008-9 by NASAs Astrophysics Strategic Mission Concepts Study program. ACCESS evaluates a space observatory designed for extreme high-contrast imaging and spectroscopy of exoplanetary systems. An actively-corrected coronagraph is used to suppress the glare of diffracted and scattered starlight to contrast levels required for exoplanet imaging. The ACCESS study considered the relative merits and readiness of four major coronagraph types, and modeled their performance with a NASA medium-class space telescope. The ACCESS study asks: What is the most capable medium-class coronagraphic mission that is possible with telescope, instrument, and spacecraft technologies available today? Using demonstrated high-TRL technologies, the ACCESS science program surveys the nearest 120+ AFGK stars for exoplanet systems, and surveys the majority of those for exozodiacal dust to the level of 1 zodi at 3 AU. Coronagraph technology developments in the coming year are expected to further enhance the science reach of the ACCESS mission concept.


Astrophysical Journal Supplement Series | 2012

HIGH PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE

Olivier Guyon; Eduardo Bendek; J. A. Eisner; Roger Angel; Neville J. Woolf; Tom D. Milster; S. Mark Ammons; Michael Shao; Stuart B. Shaklan; Marie Levine; Bijan Nemati; Joe Pitman; Robert A. Woodruff; Ruslan Belikov

Astrometric detection and mass determination of Earth-mass exoplanets requires sub-µas accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must however overcome astrometric distortions which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a teo-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star’s immediate surrounding. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars, and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg 2 field we adopt as a baseline design achieves 0.2 µas single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-µas astrometry without relying on the accurate pointing, external metrology or high stability hardware required with previously proposed high precision astrometry concepts. Subject headings: astrometry — telescopes — techniques: high angular resolution — planets and satellites: detection


Proceedings of SPIE | 2007

Demonstration of high contrast in 10% broadband light with the shaped pupil coronagraph

Ruslan Belikov; Amir Give'on; Brian Kern; Eric Cady; Michael A. Carr; Stuart B. Shaklan; Kunjithapatham Balasubramanian; Victor White; Pierre M. Echternach; Matt Dickie; John T. Trauger; Andreas Kuhnert; N. Jeremy Kasdin

The Shaped Pupil Coronagraph (SPC) is a high-contrast imaging system pioneered at Princeton for detection of extra-solar earthlike planets. It is designed to achieve 10-10 contrast at an inner working angle of 4λ/D in broadband light. A critical requirement in attaining this contrast level in practice is the ability to control wavefront phase and amplitude aberrations to at least λ/104 in rms phase and 1/1000 rms amplitude, respectively. Furthermore, this has to be maintained over a large spectral band. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Lab (JPL) is a state-of-the-art facility for studying such high contrast imaging systems and wavefront control methods. It consists of a vacuum chamber containing a configurable coronagraph setup with a Xinetics deformable mirror. Previously, we demonstrated 4x10-8 contrast with the SPC at HCIT in 10% broadband light. The limiting factors were subsequently identified as (1) manufacturing defects due to minimal feature size constraints on our shaped pupil masks and (2) the inefficiency of the wavefront correction algorithm we used (classical speckle nulling) to correct for these defects. In this paper, we demonstrate the solutions to both of these problems. In particular, we present a method to design masks with practical minimal feature sizes and show new manufactured masks with few defects. These masks were installed at HCIT and tested using more sophisticated wavefront control algorithms based on energy minimization of light in the dark zone. We present the results of these experiments, notably a record 2.4×10-9 contrast in 10% broadband light.


The Astrophysical Journal | 2006

Diffraction-based sensitivity analysis of apodized pupil-mapping systems

Ruslan Belikov; N. Jeremy Kasdin; Robert J. Vanderbei

Pupil mapping is a promising and unconventional new method for high-contrast imaging being considered for terrestrial exoplanet searches. It employs two (or more) specially designed aspheric mirrors to create a high-contrast amplitude profile across the telescope pupil that does not appreciably attenuate amplitude. As such, it reaps significant benefits in light-collecting efficiency and inner working angle, both critical parameters for terrestrial planet detection. While much has been published on various aspects of pupil-mapping systems, the problem of sensitivity to wave front aberrations remains an open question. In this paper we present an efficient method for computing the diffraction propagation in a pupil-mapped system. This method can be used for accurate studies of aberration sensitivity in pupil mapping and other coronagraphs. We demonstrate calculations of sensitivity to Zernike aberrations for a particular pupil-mapping system, as well as a concentric-ring-shaped-pupil coronagraph.

Collaboration


Dive into the Ruslan Belikov's collaboration.

Researchain Logo
Decentralizing Knowledge