Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruslan Rafikov is active.

Publication


Featured researches published by Ruslan Rafikov.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Catalysis of S-nitrosothiols formation by serum albumin: the mechanism and implication in vascular control.

Olga Rafikova; Ruslan Rafikov; Evgeny Nudler

Nitric oxide (NO⋅) is a short-lived physiological messenger. Its various biological activities can be preserved in a more stable form of S-nitrosothiols (RS-NO). Here we demonstrate that at physiological NO⋅ concentrations, plasma albumin becomes saturated with NO⋅ and accelerates formation of low-molecular-weight (LMW) RS-NO in vitro and in vivo. The mechanism involves micellar catalysis of NO⋅ oxidation in the albumin hydrophobic core and specific transfer of NO+ to LMW thiols. Albumin-mediated S-nitrosylation and its vasodilatory effect directly depend on the concentration of circulating LMW thiols. Results suggest that the hydrophobic phase formed by albumin serves as a major reservoir of NO⋅ and its reactive oxides and controls the dynamics of NO⋅-dependant processes in the vasculature.


Molecular Pharmacology | 2011

Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5.

Deepesh Pandey; Jean Philippe Gratton; Ruslan Rafikov; Stephen M. Black; David Fulton

Excessive synthesis of reactive oxygen species contributes to the pathology of many human diseases and originates from changes in the expression and posttranslational regulation of the transmembrane NADPH oxidases (Noxes). Nox5 is a novel Nox isoform whose activity is regulated by intracellular calcium levels. We have reported that the activity and calcium-sensitivity of Nox5 can also be modulated by direct phosphorylation. However, the kinases that phosphorylate Nox5 have not been identified, and thus, the goal of this study was to determine whether calcium-activated kinases such as calcium/calmodulin-dependent kinase II (CAMKII) are involved. We found that Nox5 activity in bovine aortic endothelial cells was suppressed by two doses of the CAMKII inhibitor 2-(N-[2-hydroxyethyl])-N-(4-methoxybenzenesulfonyl)amino-N-(4-chlorocinnamyl)-N-methylamine (KN-93). In cotransfected COS-7 cells, wild-type and constitutively active CAMKII, but not a dominant-negative, robustly increased basal Nox5 activity. The ability of CAMKII to increase Nox5 activity was also observed with fixed calcium concentrations in an isolated enzyme activity assay. CAMKII did not elevate intracellular calcium or activate other Nox enzymes. In vitro phosphorylation assays revealed that CAMKII can directly phosphorylate Nox5 on Thr494 and Ser498 as detected by phosphorylation state-specific antibodies. Mass spectrometry (MS) analysis revealed the phosphorylation of additional, novel sites at Ser475, Ser502, and Ser675. Of these phosphorylation sites, mutation of only Ser475 to alanine prevented CAMKII-induced increases in Nox5 activity. The ability of CAMKIIα to phosphorylate Ser475 in intact cells was supported by the binding of Nox5 to phosphoprotein-affinity columns and via MS/MS analysis. Together, these results suggest that CAMKII can positively regulate Nox5 activity via the phosphorylation of Ser475.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

NADPH Oxidase 4 Is Expressed in Pulmonary Artery Adventitia and Contributes to Hypertensive Vascular Remodeling

Scott A. Barman; Feng Chen; Yunchao Su; Christiana Dimitropoulou; Yusi Wang; John D. Catravas; Weihong Han; Laszlo Orfi; Csaba Szántai-Kis; György Kéri; István Szabadkai; Nektarios Barabutis; Olga Rafikova; Ruslan Rafikov; Stephen M. Black; Danny Jonigk; Athanassios Giannis; Reto Asmis; David W. Stepp; Ganesan Ramesh; David J.R. Fulton

Objective— Pulmonary hypertension (PH) is a progressive disease arising from remodeling and narrowing of pulmonary arteries (PAs) resulting in high pulmonary blood pressure and ultimately right ventricular failure. Elevated production of reactive oxygen species by NADPH oxidase 4 (Nox4) is associated with increased pressure in PH. However, the cellular location of Nox4 and its contribution to aberrant vascular remodeling in PH remains poorly understood. Therefore, we sought to identify the vascular cells expressing Nox4 in PAs and determine the functional relevance of Nox4 in PH. Approach and Results— Elevated expression of Nox4 was detected in hypertensive PAs from 3 rat PH models and human PH using qualititative real-time reverse transcription polymerase chain reaction, Western blot, and immunofluorescence. In the vascular wall, Nox4 was detected in both endothelium and adventitia, and perivascular staining was prominently increased in hypertensive lung sections, colocalizing with cells expressing fibroblast and monocyte markers and matching the adventitial location of reactive oxygen species production. Small-molecule inhibitors of Nox4 reduced adventitial reactive oxygen species generation and vascular remodeling as well as ameliorating right ventricular hypertrophy and noninvasive indices of PA stiffness in monocrotaline-treated rats as determined by morphometric analysis and high-resolution digital ultrasound. Nox4 inhibitors improved PH in both prevention and reversal protocols and reduced the expression of fibroblast markers in isolated PAs. In fibroblasts, Nox4 overexpression stimulated migration and proliferation and was necessary for matrix gene expression. Conclusion— These findings indicate that Nox4 is prominently expressed in the adventitia and contributes to altered fibroblast behavior, hypertensive vascular remodeling, and development of PH.


Free Radical Biology and Medicine | 2013

Bosentan inhibits oxidative and nitrosative stress and rescues occlusive pulmonaryhypertension

Olga Rafikova; Ruslan Rafikov; Sanjiv Kumar; Shruti Sharma; Saurabh Aggarwal; Frank Schneider; Danny Jonigk; Stephen M. Black; Stevan P. Tofovic

Pulmonary arterial hypertension (PH) is a fatal disease marked by excessive pulmonary vascular cell proliferation. Patients with idiopathic PH express endothelin-1 (ET-1) at high levels in their lungs. As the activation of both types of ET-1 receptor (ETA and ETB) leads to increased generation of superoxide and hydrogen peroxide, this may contribute to the severe oxidative stress found in PH patients. As a number of pathways may induce oxidative stress, the particular role of ET-1 remains unclear. The aim of this study was to determine whether inhibition of ET-1 signaling could reduce pulmonary oxidative stress and attenuate the progression of disease in rats with occlusive-angioproliferative PH induced by a single dose of SU5416 (200 mg/kg) and subsequent exposure to hypoxia for 21 days. Using this regimen, animals developed severe PH as evidenced by a progressive increase in right-ventricle (RV) peak systolic pressure (RVPSP), severe RV hypertrophy, and pulmonary endothelial and smooth muscle cell proliferation, resulting in plexiform vasculopathy. PH rats also had increased oxidative stress, correlating with endothelial nitric oxide synthase uncoupling and NADPH oxidase activation, leading to enhanced protein nitration and increases in markers of vascular remodeling. Treatment with the combined ET receptor antagonist bosentan (250 mg/kg/day; day 10 to 21) prevented further increase in RVPSP and RV hypertrophy, decreased ETA/ETB protein levels, reduced oxidative stress and protein nitration, and resulted in marked attenuation of pulmonary vascular cell proliferation. We conclude that inhibition of ET-1 signaling significantly attenuates the oxidative and nitrosative stress associated with PH and prevents its progression.


Journal of Biological Chemistry | 2012

Nitroalkenes confer acute cardioprotection via adenine nucleotide translocase 1

Sergiy M. Nadtochiy; Qiuyu Martin Zhu; William R. Urciuoli; Ruslan Rafikov; Stephen M. Black; Paul S. Brookes

Background: Nitroalkenes are cardioprotective. We investigated the role of ANT1 in this process. Results: Nitro-linoleate modifies Cys57 on ANT1. Knockdown of ANT1 inhibits cytoprotection by nitro-linoleate. Conclusion: ANT1 is required for nitro-linoleate cytoprotection and possibly for its cardioprotection. Significance: This is the first evidence for modification of a specific cysteine in a mitochondrial protein by a physiologically (and clinically) relevant electrophile. Electrophilic nitrated lipids (nitroalkenes) are emerging as an important class of protective cardiovascular signaling molecules. Although species such as nitro-linoleate (LNO2) and nitro-oleate can confer acute protection against cardiac ischemic injury, their mechanism of action is unclear. Mild uncoupling of mitochondria is known to be cardioprotective, and adenine nucleotide translocase 1 (ANT1) is a key mediator of mitochondrial uncoupling. ANT1 also contains redox-sensitive cysteines that may be targets for modification by nitroalkenes. Therefore, in this study we tested the hypothesis that nitroalkenes directly modify ANT1 and that nitroalkene-mediated cardioprotection requires ANT1. Using biotin-tagged LNO2 infused into intact perfused hearts, we obtained mass spectrometric (MALDI-TOF-TOF) evidence for direct modification (nitroalkylation) of ANT1 on cysteine 57. Furthermore, in a cell model of ischemia-reperfusion injury, siRNA knockdown of ANT1 inhibited the cardioprotective effect of LNO2. Although the molecular mechanism linking ANT1-Cys57 nitroalkylation and uncoupling is not yet known, these data suggest that ANT1-mediated uncoupling may be a mechanism for nitroalkene-induced cardioprotection.


Journal of Biological Chemistry | 2014

Lipopolysaccharide-induced lung injury involves the nitration-mediated activation of RhoA

Ruslan Rafikov; Christiana Dimitropoulou; Saurabh Aggarwal; Archana Kangath; Christine Gross; Daniel Pardo; Shruti Sharma; Agnieszka Jezierska-Drutel; Vijay Patel; Connie Snead; Rudolf Lucas; Alexander D. Verin; David Fulton; John D. Catravas; Stephen M. Black

Background: The activation of RhoA is a critical event in acute lung injury (ALI), but the role of nitration in this process is unresolved. Results: The nitration of RhoA at Tyr34 produced GEF-like conformational changes that stimulate RhoA by decreasing GDP binding. Conclusion: We have identified a new mechanism of RhoA activation. Significance: Preventing RhoA nitration may be useful for the management of ALI. Acute lung injury (ALI) is characterized by increased endothelial hyperpermeability. Protein nitration is involved in the endothelial barrier dysfunction in LPS-exposed mice. However, the nitrated proteins involved in this process have not been identified. The activation of the small GTPase RhoA is a critical event in the barrier disruption associated with LPS. Thus, in this study we evaluated the possible role of RhoA nitration in this process. Mass spectroscopy identified a single nitration site, located at Tyr34 in RhoA. Tyr34 is located within the switch I region adjacent to the nucleotide-binding site. Utilizing this structure, we developed a peptide designated NipR1 (nitration inhibitory peptide for RhoA 1) to shield Tyr34 against nitration. TAT-fused NipR1 attenuated RhoA nitration and barrier disruption in LPS-challenged human lung microvascular endothelial cells. Further, treatment of mice with NipR1 attenuated vessel leakage and inflammatory cell infiltration and preserved lung function in a mouse model of ALI. Molecular dynamics simulations suggested that the mechanism by which Tyr34 nitration stimulates RhoA activity was through a decrease in GDP binding to the protein caused by a conformational change within a region of Switch I, mimicking the conformational shift observed when RhoA is bound to a guanine nucleotide exchange factor. Stopped flow kinetic analysis was used to confirm this prediction. Thus, we have identified a new mechanism of nitration-mediated RhoA activation involved in LPS-mediated endothelial barrier dysfunction and show the potential utility of “shielding” peptides to prevent RhoA nitration in the management of ALI.


Journal of Biological Chemistry | 2013

Asymmetric Dimethylarginine Induces Endothelial Nitric Oxide Synthase Mitochondrial Redistribution through the nitration-mediated activation of Akt1

Ruslan Rafikov; Olga Rafikova; Saurabh Aggarwal; Christine Gross; Xutong Sun; Julin Desai; David Fulton; Stephen M. Black

Background: Asymmetric dimethylarginine (ADMA) can induce endothelial nitric-oxide synthase (eNOS) redistribution from the plasma membrane to the mitochondria. Results: AMDA induces nitration of Akt1 at Tyr350 within the client-binding domain, increasing its activation and enhancing eNOS phosphorylation. Conclusion: Under physiologic conditions, Akt1-mediated redistribution of eNOS to the mitochondria enhances mitochondrial coupling. Significance: Reducing Akt1 nitration may reduce the deleterious effects of Akt1 signaling in various pathologies. We have recently demonstrated that asymmetric dimethylarginine (ADMA) induces the translocation of endothelial nitric-oxide synthase (eNOS) to the mitochondrion via a mechanism that requires protein nitration. Thus, the goal of this study was elucidate how eNOS redistributes to mitochondria and to identify the nitrated protein responsible for this event. Our data indicate that exposure of pulmonary arterial endothelial cells to ADMA enhanced eNOS phosphorylation at the Akt1-dependent phosphorylation sites Ser617 and Ser1179. Mutation of these serine residues to alanine (S617A and S1179A) inhibited nitration-mediated eNOS translocation to the mitochondria, whereas the phosphormimic mutations (S617D and S1179D) exhibited increased mitochondrial redistribution in the absence of ADMA. The overexpression of a dominant-negative Akt1 also attenuated ADMA-mediated eNOS mitochondrial translocation. Furthermore, ADMA enhanced Akt1 nitration and increased its activity. Mass spectrometry identified a single nitration site in Akt1 located at the tyrosine residue (Tyr350) located within the client-binding domain. Replacement of Tyr350 with phenylalanine abolished peroxynitrite-mediated eNOS translocation to mitochondria. We also found that in the absence of ADMA, eNOS translocation decreased mitochondrial oxygen consumption and superoxide production without altering cellular ATP level. This suggests that under physiologic conditions, eNOS translocation enhances mitochondria coupling. In conclusion, we have identified a new mechanism by which eNOS translocation to mitochondria is regulated by the phosphorylation of eNOS at Ser617 and Ser1179 by Akt1 and that this is enhanced when Akt1 becomes nitrated at Tyr350.


PLOS ONE | 2012

PPAR-γ Regulates Carnitine Homeostasis and Mitochondrial Function in a Lamb Model of Increased Pulmonary Blood Flow

Shruti Sharma; Xutong Sun; Ruslan Rafikov; Sanjiv Kumar; Yali Hou; Peter Oishi; Sanjeev A. Datar; Gary W. Raff; Jeffrey R. Fineman; Stephen M. Black

Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. Methods and Results siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Conclusion Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow.


Free Radical Biology and Medicine | 2012

Preserving mitochondrial function prevents the proteasomal degradation of GTP cyclohydrolase I.

Shruti Sharma; Xutong Sun; Sanjiv Kumar; Ruslan Rafikov; Angela Aramburo; Gokhan Kalkan; Jing Tian; Imran Rehmani; Suphin Kallarackal; J. R. Fineman; Stephen M. Black

The development of pulmonary hypertension is a common accompaniment of congenital heart disease (CHD) with increased pulmonary blood flow. Our recent evidence suggests that asymmetric dimethylarginine (ADMA)-induced mitochondrial dysfunction causes endothelial nitric oxide synthase (eNOS) uncoupling secondary to a proteasome-dependent degradation of GTP cyclohydrolase I (GCH1) that results in a decrease in the NOS cofactor tetrahydrobiopterin (BH(4)). Decreases in NO signaling are thought to be an early hallmark of endothelial dysfunction. As l-carnitine plays an important role in maintaining mitochondrial function, in this study we examined the protective mechanisms and the therapeutic potential of l-carnitine on NO signaling in pulmonary arterial endothelial cells and in a lamb model of CHD and increased pulmonary blood flow (Shunt). Acetyl-l-carnitine attenuated the ADMA-mediated proteasomal degradation of GCH1. This preservation was associated with a decrease in the association of GCH1 with Hsp70 and the C-terminus of Hsp70-interacting protein (CHIP) and a decrease in its ubiquitination. This in turn prevented the decrease in BH(4) levels induced by ADMA and preserved NO signaling. Treatment of Shunt lambs with l-carnitine also reduced GCH1/CHIP interactions, attenuated the ubiquitination and degradation of GCH1, and increased BH(4) levels compared to vehicle-treated Shunt lambs. The increases in BH(4) were associated with decreased NOS uncoupling and enhanced NO generation. Thus, we conclude that L-carnitine may have a therapeutic potential in the treatment of pulmonary hypertension in children with CHD with increased pulmonary blood flow.


Redox biology | 2015

Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells.

Ruslan Rafikov; Xutong Sun; Olga Rafikova; Mary L. Meadows; Ankit A. Desai; Zain Khalpey; Jason X.-J. Yuan; Jeffrey R. Fineman; Stephen M. Black

ATP is essential for cellular function and is usually produced through oxidative phosphorylation. However, mitochondrial dysfunction is now being recognized as an important contributing factor in the development cardiovascular diseases, such as pulmonary hypertension (PH). In PH there is a metabolic change from oxidative phosphorylation to mainly glycolysis for energy production. However, the mechanisms underlying this glycolytic switch are only poorly understood. In particular the role of the respiratory Complexes in the mitochondrial dysfunction associated with PH is unresolved and was the focus of our investigations. We report that smooth muscle cells isolated from the pulmonary vessels of rats with PH (PH-PASMC), induced by a single injection of monocrotaline, have attenuated mitochondrial function and enhanced glycolysis. Further, utilizing a novel live cell assay, we were able to demonstrate that the mitochondrial dysfunction in PH-PASMC correlates with deficiencies in the activities of Complexes I–III. Further, we observed that there was an increase in mitochondrial reactive oxygen species generation and mitochondrial membrane potential in the PASMC isolated from rats with PH. We further found that the defect in Complex I activity was due to a loss of Complex I assembly, although the assembly of Complexes II and III were both maintained. Thus, we conclude that loss of Complex I assembly may be involved in the switch of energy metabolism in smooth muscle cells to glycolysis and that maintaining Complex I activity may be a potential therapeutic target for the treatment of PH.

Collaboration


Dive into the Ruslan Rafikov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saurabh Aggarwal

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Sanjiv Kumar

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Christine Gross

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shruti Sharma

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yali Hou

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge