Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russ Hauser is active.

Publication


Featured researches published by Russ Hauser.


Epidemiology | 2003

Phthalate exposure and human semen parameters

Susan M. Duty; Manori J. Silva; Dana B. Barr; John W. Brock; Louise Ryan; Zuying Chen; Robert F. Herrick; David C. Christiani; Russ Hauser

Background. There is scientific and public concern about commonly used chemicals, including phthalates, that are associated with reproductive toxicity in laboratory animals and are hormonally active. People are exposed to phthalates through diet, consumer products and medical devices. The present study explored whether environmental levels of phthalates are associated with altered semen quality in humans. Methods. We recruited 168 men who were part of subfertile couples and who presented to the Massachusetts General Hospital andrology laboratory for semen analysis between January 2000 and April 2001. Semen parameters were dichotomized based on 1999 World Health Organization reference values for sperm concentration (<20 million/ml) and motility (<50% motile), as well as Tygerberg Strict criteria for morphology (<4% normal). The comparison group was men for whom these semen parameters were all above the reference values. In urine, eight phthalate metabolites were measured with high-performance liquid chromatography and tandem mass spectrometry. Specific gravity-adjusted phthalate metabolite levels were categorized into tertiles. Results. There was a dose-response relation between tertiles of mono-butyl phthalate and sperm motility (odds ratio per tertile = 1.0, 1.8, 3.0;P-value for trend = 0.02) and sperm concentration (1.0, 1.4, 3.3;P-value for trend = 0.07). In addition, there was a dose-response relation between tertiles of monobenzyl phthalate and sperm concentration (1.0, 1.4, 5.5;P-value for trend = 0.02). Conclusions. There were dose-response relations for mono-butyl phthalate and monobenzyl phthalate with one or more semen parameters, and suggestive evidence for monomethyl phthalate with sperm morphology. The lack of a relation for other phthalates may indicate a difference in spermatotoxicity among phthalates.


Epidemiology | 2006

Altered Semen Quality in Relation to Urinary Concentrations of Phthalate Monoester and Oxidative Metabolites

Russ Hauser; John D. Meeker; Susan M. Duty; Manori J. Silva; Antonia M. Calafat

Background: Phthalates are multifunctional chemicals used in a variety of consumer, medical, and personal care products. Previously, we reported dose–response associations of decreased semen quality with urinary concentrations of monobutyl phthalate (MBP) and monobenzyl (MBzP) phthalate, which are metabolites of dibutyl phthalate and butylbenzyl phthalate, respectively. The present study extends our work in a larger sample of men and includes measurements of di(2-ethylhexyl) phthalate (DEHP) oxidative metabolites. Methods: Between January 2000 and May 2004, we recruited 463 male partners of subfertile couples who presented for semen analysis to the Massachusetts General Hospital. Semen parameters were dichotomized based on World Health Organization reference values for sperm concentration (<20 million/mL) and motility (<50% motile) and the Tygerberg Kruger Strict criteria for morphology (<4% normal). The comparison group was men with all 3 semen parameters above the reference values. In a single spot urine sample from each man, phthalate metabolites were measured using solid-phase extraction coupled to high-performance liquid chromatography isotope-dilution tandem mass spectrometry. Results: There were dose–response relationships of MBP with low sperm concentration (odds ratio per quartile adjusted for age, abstinence time, and smoking status = 1.00, 3.1, 2.5, 3.3; P for trend = 0.04) and motility (1.0, 1.5, 1.5, 1.8; P for trend = 0.04). There was suggestive evidence of an association between the highest MBzP quartile and low sperm concentration (1.00, 1.1, 1.1, 1.9; P for trend = 0.13). There were no relationships of monoethyl phthalate, monomethyl phthalate, and the DEHP metabolites with these semen parameters. Conclusion: The present study confirms previous results on the relationship of altered semen quality with exposure to MBP at general population levels. We did not find associations between semen parameters and 3 DEHP metabolites.


Environmental Health Perspectives | 2004

Temporal variability of urinary phthalate metabolite levels in men of reproductive age

Russ Hauser; John D. Meeker; Sohee Park; Manori J. Silva; Antonia M. Calafat

Phthalates are a family of multifunctional chemicals widely used in personal care and other consumer products. The ubiquitous use of phthalates results in human exposure through multiple sources and routes, including dietary ingestion, dermal absorption, inhalation, and parenteral exposure from medical devices containing phthalates. We explored the temporal variability over 3 months in urinary phthalate metabolite levels among 11 men who collected up to nine urine samples each during this time period. Eight phthalate metabolites were measured by solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry. Statistical analyses were performed to determine the between- and within-subject variance apportionment, and the sensitivity and specificity of a single urine sample to classify a subject’s 3-month average exposure. Five of the eight phthalates were frequently detected. Monoethyl phthalate (MEP) was detected in 100% of samples; monobutyl phthalate, monobenzyl phthalate, mono-2-ethylhexyl phthalate (MEHP), and monomethyl phthalate were detected in > 90% of samples. Although we found both substantial day-to-day and month-to-month variability in each individual’s urinary phthalate metabolite levels, a single urine sample was moderately predictive of each subject’s exposure over 3 months. The sensitivities ranged from 0.56 to 0.74. Both the degree of between- and within-subject variance and the predictive ability of a single urine sample differed among phthalate metabolites. In particular, a single urine sample was most predictive for MEP and least predictive for MEHP. These results suggest that the most efficient exposure assessment strategy for a particular study may depend on the phthalates of interest.


Fertility and Sterility | 2010

Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic

Jorge E. Chavarro; Thomas L. Toth; Diane L. Wright; John D. Meeker; Russ Hauser

OBJECTIVE To examine the association between body weight and measures of male reproductive potential. DESIGN Cross-sectional study. SETTING Fertility clinic in an academic medical center. PATIENT(S) Four hundred eighty-three male partners of subfertile couples. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Standard semen analysis, sperm DNA fragmentation, and serum levels of reproductive hormones. RESULT(S) As expected, body mass index (BMI) was positively related to estradiol levels and inversely related to total testosterone and sex hormone-binding glogulin (SHBG) levels. There was also a strong inverse relation between BMI and inhibin B levels and a lower testosterone:LH ratio among men with a BMI > or = 35 kg/m(2). Body mass index was unrelated to sperm concentration, motility, or morphology. Ejaculate volume decreased steadily with increasing BMI levels. Further, men with BMI > or = 35 kg/m(2) had a lower total sperm count (concentration x volume) than normal weight men (adjusted difference in the median [95% confidence interval] = -86 x 10(6) sperm [-134, -37]). Sperm with high DNA damage were significantly more numerous in obese men than in normal-weight men. CONCLUSION(S) These data suggest that despite major differences in reproductive hormone levels with increasing body weight, only extreme levels of obesity may negatively influence male reproductive potential.


Environmental Health Perspectives | 2008

Characterization of Phthalate Exposure among Pregnant Women Assessed by Repeat Air and Urine Samples

Jennifer J. Adibi; Robin M. Whyatt; Paige L. Williams; Antonia M. Calafat; David Camann; Robert F. Herrick; Heather H. Nelson; Hari K. Bhat; Frederica P. Perera; Manori J. Silva; Russ Hauser

Background Although urinary concentrations of phthalate metabolites are frequently used as biomarkers in epidemiologic studies, variability during pregnancy has not been characterized. Methods We measured phthalate metabolite concentrations in spot urine samples collected from 246 pregnant Dominican and African-American women. Twenty-eight women had repeat urine samples collected over a 6-week period. We also analyzed 48-hr personal air samples (n = 96 women) and repeated indoor air samples (n = 32 homes) for five phthalate diesters. Mixed-effects models were fit to evaluate reproducibility via intraclass correlation coefficients (ICC). We evaluated the sensitivity and specificity of using a single specimen versus repeat samples to classify a woman’s exposure in the low or high category. Results Phthalates were detected in 85–100% of air and urine samples. ICCs for the unadjusted urinary metabolite concentrations ranged from 0.30 for mono-ethyl phthalate to 0.66 for monobenzyl phthalate. For indoor air, ICCs ranged from 0.48 [di-2-ethylhexyl phthalate (DEHP)] to 0.83 [butylbenzyl phthalate (BBzP)]. Air levels of phthalate diesters correlated with their respective urinary metabolite concentrations for BBzP (r = 0.71), di-isobutyl phthalate (r = 0.44), and diethyl phthalate (DEP; r = 0.39). In women sampled late in pregnancy, specific gravity appeared to be more effective than creatinine in adjusting for urine dilution. Conclusions Urinary concentrations of DEP and DEHP metabolites in pregnant women showed lower reproducibility than metabolites for di-n-butyl phthalate and BBzP. A single indoor air sample may be sufficient to characterize phthalate exposure in the home, whereas urinary phthalate biomarkers should be sampled longitudinally during pregnancy to minimize exposure misclassification.


Environmental Research | 2008

Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands : The Generation R study

Xibiao Ye; Frank H. Pierik; Russ Hauser; Susan M. Duty; Jürgen Angerer; Melissa M. Park; Alex Burdorf; Albert Hofman; Vincent W. V. Jaddoe; Johan P. Mackenbach; Eric A.P. Steegers; Henning Tiemeier; Matthew P. Longnecker

Concern about potential health impacts of low-level exposures to organophosphorus (OP) pesticides, bisphenol A (BPA), and phthalates among the general population is increasing. We measured levels of six dialkyl phosphate (DAP) metabolites of OP pesticides, a chlorpyrifos-specific metabolite (3,5,6-trichloro-2-pyridinol, TCPy), BPA, and 14 phthalate metabolites in urine samples of 100 pregnant women from the Generation R study, the Netherlands. The unadjusted and creatinine-adjusted concentrations were reported, and compared to National Health and Nutrition Examination Survey and other studies. In general, these metabolites were detectable in the urine of the women from the Generation R study and compared with other groups, they had relatively high-level exposures to OP pesticides and several phthalates but similar exposure to BPA. The median concentrations of total dimethyl (DM) metabolites was 264.0 n mol/g creatinine (Cr) and of total DAP was 316.0 n mol/g Cr. The median concentration of mono-ethyl phthalate (MEP) was 222.0 microg/g Cr; the median concentrations of mono-isobutyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) were above 50 microg/g Cr. The median concentrations of the three secondary metabolites of di-2-ethylhexyl phthalate (DEHP) were greater than 20 microg/g Cr. The data indicate that the Generation R study population provides a wide distribution of selected environmental exposures. Reasons for the relatively high levels and possible health effects need investigation.


Reproductive Toxicology | 2010

Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic.

John D. Meeker; Shelley Ehrlich; Thomas L. Toth; Diane L. Wright; Antonia M. Calafat; Ana T. Trisini; Xiaoyun Ye; Russ Hauser

Bisphenol A (BPA) impairs spermatogenesis in animals, but human studies are lacking. We measured urinary BPA concentrations, semen quality, and sperm DNA damage (comet assay) in 190 men recruited through an infertility clinic. BPA was detected in 89% of samples, with a median (interquartile range [IQR]) concentration of 1.3 (0.8-2.5) ng/mL. Urinary BPA concentration was associated with slightly elevated, though not statistically significant, odds for below reference sperm concentration, motility, and morphology. When modeled as continuous dependent variables, an IQR increase in urinary BPA concentration was associated with declines in sperm concentration, motility, and morphology of 23% (95%CI -40%, -0.3%), 7.5% (-17%, +1.5%), and 13% (-26%, -0.1%), respectively, along with a 10% (0.03%, 19%) increase in sperm DNA damage measured as the percentage of DNA in comet tail. In conclusion, urinary BPA may be associated with declined semen quality and increased sperm DNA damage, but confirmatory studies are needed.


Environmental Health Perspectives | 2014

Bisphenol A and Reproductive Health: Update of Experimental and Human Evidence, 2007–2013

Jackye Peretz; Lisa A. Vrooman; William A. Ricke; Patricia A. Hunt; Shelley Ehrlich; Russ Hauser; Vasantha Padmanabhan; Hugh S. Taylor; Shanna H. Swan; Catherine A. VandeVoort; Jodi A. Flaws

Background: In 2007, an expert panel reviewed associations between bisphenol A (BPA) exposure and reproductive health outcomes. Since then, new studies have been conducted on the impact of BPA on reproduction. Objective: In this review, we summarize data obtained since 2007, focusing on a) findings from human and animal studies, b) the effects of BPA on a variety of reproductive end points, and c) mechanisms of BPA action. Methods: We reviewed the literature published from 2007 to 2013 using a PubMed search based on keywords related to BPA and male and female reproduction. Discussion: Because BPA has been reported to affect the onset of meiosis in both animal and in vitro models, interfere with germ cell nest breakdown in animal models, accelerate follicle transition in several animal species, alter steroidogenesis in multiple animal models and women, and reduce oocyte quality in animal models and women undergoing in vitro fertilization (IVF), we consider it an ovarian toxicant. In addition, strong evidence suggests that BPA is a uterine toxicant because it impaired uterine endometrial proliferation, decreased uterine receptivity, and increased implantation failure in animal models. BPA exposure may be associated with adverse birth outcomes, hyperandrogenism, sexual dysfunction, and impaired implantation in humans, but additional studies are required to confirm these associations. Studies also suggest that BPA may be a testicular toxicant in animal models, but the data in humans are equivocal. Finally, insufficient evidence exists regarding effects of BPA on the oviduct, the placenta, and pubertal development. Conclusion: Based on reports that BPA impacts female reproduction and has the potential to affect male reproductive systems in humans and animals, we conclude that BPA is a reproductive toxicant. Citation: Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. 2014. Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Perspect 122:775–786; http://dx.doi.org/10.1289/ehp.1307728


Science of The Total Environment | 2009

Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men

John D. Meeker; Paula I. Johnson; David Camann; Russ Hauser

Despite documented widespread human exposure to polybrominated diphenyl ethers (PBDEs) through dietary intake and contact with or inhalation of indoor dust, along with growing laboratory evidence for altered endocrine function following exposure, human studies of PBDE exposure and endocrine effects remain limited. We conducted a preliminary study within an ongoing study on the impact of environmental exposures on male reproductive health. We measured serum hormone levels and PBDE concentrations (BDE 47, 99 and 100) in house dust from 24 men recruited through a US infertility clinic. BDE 47 and 99 were detected in 100% of dust samples, and BDE 100 was detected in 67% of dust samples, at concentrations similar to those reported in previous US studies. In multivariable regression models adjusted for age and BMI, there was a statistically significant inverse relationship between dust PBDE concentrations and free androgen index. Dust PBDE concentrations were also strongly and inversely associated with luteinizing hormone (LH) and follicle stimulating hormone (FSH), and positively associated with inhibin B and sex hormone binding globulin (SHBG). Finally, consistent with limited recent human studies of adults, PBDEs were positively associated with free T4. In conclusion, the present study provides compelling evidence of altered hormone levels in relation to PBDE exposures estimated as concentrations in house dust, and that house dust is an important source of human PBDE exposure, but more research is urgently needed.


Environmental Health Perspectives | 2007

Temporal Variability and Predictors of Urinary Bisphenol A Concentrations in Men and Women

Shruthi Mahalingaiah; John D. Meeker; Kimberly R. Pearson; Antonia M. Calafat; Xiaoyun Ye; J.C. Petrozza; Russ Hauser

Background Bisphenol A (BPA) is used to manufacture polymeric materials, such as polycarbonate plastics, and is found in a variety of consumer products. Recent data show widespread BPA exposure among the U.S. population. Objective Our goal in the present study was to determine the temporal variability and predictors of BPA exposure. Methods We measured urinary concentrations of BPA among male and female patients from the Massachusetts General Hospital Fertility Center. Results Between 2004 and 2006, 217 urine samples were collected from 82 subjects: 45 women (145 samples) and 37 men (72 samples). Of these, 24 women and men were partners and contributed 42 pairs of samples collected on the same day. Ten women became pregnant during the follow-up period. Among the 217 urine samples, the median BPA concentration was 1.20 μg/L, ranging from below the limit of detection (0.4 μg/L) to 42.6 μg/L. Age, body mass index, and sex were not significant predictors of urinary BPA concentrations. BPA urinary concentrations among pregnant women were 26% higher (–26%, +115%) than those among the same women when not pregnant (p > 0.05). The urinary BPA concentrations of the female and male partner on the same day were correlated (r = 0.36; p = 0.02). The sensitivity of classifying a subject in the highest tertile using a single urine sample was 0.64. Conclusion We found a nonsignificant increase in urinary BPA concentrations in women while pregnant compared with nonpregnant samples from the same women. Samples collected from partners on the same day were correlated, suggesting shared sources of exposure. Finally, a single urine sample showed moderate sensitivity for predicting a subject’s tertile categorization.

Collaboration


Dive into the Russ Hauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonia M. Calafat

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge