Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russ Hille is active.

Publication


Featured researches published by Russ Hille.


Chemical Reviews | 1996

The Mononuclear Molybdenum Enzymes

Russ Hille; James L. Hall; Partha Basu

Molybdenum is the only second-row transition metal required by most living organisms, and is nearly universally distributed in biology. Enzymes containing molybdenum in their active sites have long been recognized,1 and at present over 50 molybdenum-containing enzymes have been purified and biochemically characterized; a great many more gene products have been annotated as putative molybdenum-containing proteins on the basis of genomic and bioinformatic analysis.2 In certain cases, our understanding of the relationship between enzyme structure and function is such that we can speak with confidence as to the detailed nature of the reaction mechanism and, with the availability of high-resolution X-ray crystal structures, the specific means by which transition states are stabilized and reaction rate is accelerated within the friendly confines of the active site. At the same time, our understanding of the biosynthesis of the organic cofactor that accompanies molybdenum (variously called molybdopterin or pyranopterin), the manner in which molybdenum is incorporated into it, and then further modified as necessary prior to insertion into apoprotein has also (in at least some cases) become increasingly well understood. It is now well-established that all molybdenum-containing enzymes other than nitrogenase (in which molybdenum is incorporated into a [MoFe7S9] cluster of the active site) fall into three large and mutually exclusive families, as exemplified by the enzymes xanthine oxidase, sulfite oxidase, and DMSO reductase; these enzymes represent the focus of the present account.3 The structures of the three canonical molybdenum centers in their oxidized Mo(VI) states are shown in Figure 1, along with that for the pyranopterin cofactor. The active sites of members of the xanthine oxidase family have an LMoVIOS-(OH) structure with a square-pyramidal coordination geometry. The apical ligand is a Mo=O ligand, and the equatorial plane has two sulfurs from the enedithiolate side chain of the pyranopterin cofactor, a catalytically labile Mo–OH group, and most frequently a Mo=S. Nonfunctional forms of these enzymes exist in which the equatorial Mo=S is replaced with a second Mo=O; in at least one member of the family the Mo=S is replaced by a Mo=Se, and in others it is replaced by a more complex –S–Cu–S–Cys to give a binuclear center. Members of the sulfite oxidase family have a related LMoVIO2(S–Cys) active site, again square-pyramidal with an apical Mo=O and a bidentate enedithiolate Ligand (L) in the equatorial plane but with a second equatorial Mo=O (rather than Mo–OH) and a cysteine ligand contributed by the protein (rather than a Mo=S) completing the molybdenum coordination sphere. The final family is the most diverse structurally, although all members possess two (rather than just one) equiv of the pyranopterin cofactor and have an L2MoVIY(X) trigonal prismatic coordination geometry. DMSO reductase itself has a catalytically labile Mo=O as Y and a serinate ligand as X completing the metal coordination sphere of oxidized enzyme. Other family members have cysteine (the bacterial Nap periplasmic nitrate reductases), selenocysteine (formate dehydrogenase H), –OH (arsenite oxidase), or aspartate (the NarGHI dissimilatory nitrate reductases) in place of the serine. Some enzymes have S or even Se in place of the Mo=O group. Members of the DMSO reductase family exhibit a general structural homology to members of the aldehyde:ferredoxin oxidoreductase family of tungsten-containing enzymes;4 indeed, the first pyranopterin-containing enzyme to be crystallographically characterized was the tungsten-containing aldehyde:ferredoxin oxidoreductase from Pyrococcus furiosus,5 a fact accounting for why many workers in the field prefer “pyranopterin” (or, perhaps waggishly, “tungstopterin”) to “molybdopterin”. The term pyranopterin will generally be used in the present account. Figure 1 Active site structures for the three families of mononuclear molybdenum enzymes. The structures shown are, from left to right, for xanthine oxidase, sulfite oxidase, and DMSO reductase. The structure of the pyranopterin cofactor common to all of these ... What follows is first a summary of our understanding of the biosynthesis of the pyranopterin cofactor, then a discussion of members of each family of molybdenum enzymes in turn. An emphasis has been placed on the relationship of structure to function for the many proteins involved in the biology of molybdenum for which X-ray crystal structures exist, and with the large and growing number of molybdenum-containing enzymes identified by genomics and proteomics analysis, the focus here is on those systems that are best understood from a biochemical standpoint. More recent results are emphasized, and the reader is referred to other reviews for more comprehensive coverage of the literature prior to 1995.3,6 The reader is also referred to other recently appearing reviews in the general area for the perspectives of other workers in the field, particularly with regard to genomic, proteomic, and/or metallomic analyses of systems, which due to space limitations are not considered in detail here.2c,7


Chemical Reviews | 2013

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation

Aaron M. Appel; John E. Bercaw; Andrew B. Bocarsly; Holger Dobbek; Daniel L. DuBois; Michel Dupuis; James G. Ferry; Etsuko Fujita; Russ Hille; Paul J. A. Kenis; Cheryl A. Kerfeld; Robert H. Morris; Charles H. F. Peden; Archie R. Portis; Stephen W. Ragsdale; Thomas B. Rauchfuss; Joost N. H. Reek; Lance C. Seefeldt; Rudolf K. Thauer; Grover L. Waldrop

Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.


Trends in Biochemical Sciences | 2002

Molybdenum and tungsten in biology

Russ Hille

Molybdenum is the only second-row transition metal that is required by most living organisms, and the few species that do not require molybdenum use tungsten, which lies immediately below molybdenum in the periodic table. Because of their unique chemical versatility and unusually high bioavailability these two transition metals have been incorporated into the active sites of enzymes over the course of evolution. Enzymes that contain molybdenum or tungsten continue to be discovered and several crystal structures have become available recently. This new structural information has been complemented by spectroscopic and kinetic methods, as well as computational approaches. Together, these studies provide an increasingly detailed view of the reaction mechanisms and the correlation between the electronic structure of the active site and catalytic function, one of the fundamental goals in metallobiochemistry.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans

Serpil C. Erzurum; S. Ghosh; Allison J. Janocha; W. Xu; S. Bauer; Nathan S. Bryan; Jesús Tejero; Craig Hemann; Russ Hille; Dennis J. Stuehr; Martin Feelisch; Cynthia M. Beall

The low barometric pressure at high altitude causes lower arterial oxygen content among Tibetan highlanders, who maintain normal levels of oxygen use as indicated by basal and maximal oxygen consumption levels that are consistent with sea level predictions. This study tested the hypothesis that Tibetans resident at 4,200 m offset physiological hypoxia and achieve normal oxygen delivery by means of higher blood flow enabled by higher levels of bioactive forms of NO, the main endothelial factor regulating blood flow and vascular resistance. The natural experimental study design compared Tibetans at 4,200 m and U.S. residents at 206 m. Eighty-eight Tibetan and 50 U.S. resident volunteers (18–56 years of age, healthy, nonsmoking, nonhypertensive, not pregnant, with normal pulmonary function) participated. Forearm blood flow, an indicator of systemic blood flow, was measured noninvasively by using plethysmography at rest, after breathing supplemental oxygen, and after exercise. The Tibetans had more than double the forearm blood flow of low-altitude residents, resulting in greater than sea level oxygen delivery to tissues. In comparison to sea level controls, Tibetans had >10-fold-higher circulating concentrations of bioactive NO products, including plasma and red blood cell nitrate and nitroso proteins and plasma nitrite, but lower concentrations of iron nitrosyl complexes (HbFeIINO) in red blood cells. This suggests that NO production is increased and that metabolic pathways controlling formation of NO products are regulated differently among Tibetans. These findings shift attention from the traditional focus on pulmonary and hematological systems to vascular factors contributing to adaptation to high-altitude hypoxia.


Structure | 2001

Crystal Structure of the 100 kDa Arsenite Oxidase from Alcaligenes faecalis in Two Crystal Forms at 1.64 Å and 2.03 Å

Paul J. Ellis; Thomas Conrads; Russ Hille; Peter Kuhn

BACKGROUND Arsenite oxidase from Alcaligenes faecalis NCIB 8687 is a molybdenum/iron protein involved in the detoxification of arsenic. It is induced by the presence of AsO(2-) (arsenite) and functions to oxidize As(III)O(2-), which binds to essential sulfhydryl groups of proteins and dithiols, to the relatively less toxic As(V)O(4)(3-) (arsenate) prior to methylation. RESULTS Using a combination of multiple isomorphous replacement with anomalous scattering (MIRAS) and multiple-wavelength anomalous dispersion (MAD) methods, the crystal structure of arsenite oxidase was determined to 2.03 A in a P2(1) crystal form with two molecules in the asymmetric unit and to 1.64 A in a P1 crystal form with four molecules in the asymmetric unit. Arsenite oxidase consists of a large subunit of 825 residues and a small subunit of approximately 134 residues. The large subunit contains a Mo site, consisting of a Mo atom bound to two pterin cofactors, and a [3Fe-4S] cluster. The small subunit contains a Rieske-type [2Fe-2S] site. CONCLUSIONS The large subunit of arsenite oxidase is similar to other members of the dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes, particularly the dissimilatory periplasmic nitrate reductase from Desulfovibrio desulfuricans, but is unique in having no covalent bond between the polypeptide and the Mo atom. The small subunit has no counterpart among known Mo protein structures but is homologous to the Rieske [2Fe-2S] protein domain of the cytochrome bc(1) and cytochrome b(6)f complexes and to the Rieske domain of naphthalene 1,2-dioxygenase.


Journal of Natural Products | 2009

Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin.

James M. Pauff; Russ Hille

Xanthine oxidoreductase (XOR) is a molybdenum-containing enzyme that under physiological conditions catalyzes the final two steps in purine catabolism, ultimately generating uric acid for excretion. Here we have investigated four naturally occurring compounds that have been reported to be inhibitors of XOR in order to examine the nature of their inhibition utilizing in vitro steady-state kinetic studies. We find that luteolin and quercetin are competitive inhibitors and that silibinin is a mixed-type inhibitor of the enzyme in vitro, and, unlike allopurinol, the inhibition is not time-dependent. These three natural products also decrease the production of superoxide by the enzyme. In contrast, and contrary to previous reports in the literature based on in vivo and other nonmechanistic studies, we find that curcumin did not inhibit the activity of purified XO nor its superoxide production in vitro.


Journal of Biological Chemistry | 2008

Catalytic Reduction of a Tetrahydrobiopterin Radical within Nitric-oxide Synthase

Chin Chuan Wei; Zhi Qiang Wang; Jesús Tejero; Ya Ping Yang; Craig Hemann; Russ Hille; Dennis J. Stuehr

Nitric-oxide synthases (NOS) are catalytically self-sufficient flavo-heme enzymes that generate NO from arginine (Arg) and display a novel utilization of their tetrahydrobiopterin (H4B) cofactor. During Arg hydroxylation, H4B acts as a one-electron donor and is then presumed to redox cycle (i.e. be reduced back to H4B) within NOS before further catalysis can proceed. Whereas H4B radical formation is well characterized, the subsequent presumed radical reduction has not been demonstrated, and its potential mechanisms are unknown. We investigated radical reduction during a single turnover Arg hydroxylation reaction catalyzed by neuronal NOS to document the process, determine its kinetics, and test for involvement of the NOS flavoprotein domain. We utilized a freeze-quench instrument, the biopterin analog 5-methyl-H4B, and a method that could separately quantify the flavin and pterin radicals that formed in NOS during the reaction. Our results establish that the NOS flavoprotein domain catalyzes reduction of the biopterin radical following Arg hydroxylation. The reduction is calmodulin-dependent and occurs at a rate that is similar to heme reduction and fast enough to explain H4B redox cycling in NOS. These results, in light of existing NOS crystal structures, suggest a “through-heme” mechanism may operate for H4B radical reduction in NOS.


Journal of Biological Inorganic Chemistry | 2002

Iron-sulfur cluster biosynthesis: characterization of Schizosaccharomyces pombe Isa1.

Gong Wu; Sheref S. Mansy; Craig Hemann; Russ Hille; Kristene K. Surerus; J. A. Cowan

Abstract. Eukaryotic Isa1 is one of several mitochondrial proteins that have been implicated in Fe-S cluster assembly paths in vivo. We report the first biochemical characterization of an eukaryotic member of this family and discuss this in the context of results from in vivo studies and studies of bacterial homologues. Schizosaccharomycespombe Isa1 is a multimeric protein carrying [2Fe-2S]2+ clusters that have been characterized by Mössbauer and optical spectroscopic studies. Complex formation with a redox-active ferredoxin has been identified through crosslinking experiments and the coordination chemistry and stability of the native clusters has been investigated through site-directed mutagenesis and spectroscopic analysis. Electronic supplementary material to this paper, containing Mössbauer and UV-visible spectra for mutant Isa1 proteins, can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0330-2.


Dalton Transactions | 2013

The molybdenum oxotransferases and related enzymes

Russ Hille

A perspective is provided of recent advances in our understanding of molybdenum-containing enzymes other than nitrogenase, a large and diverse group of enzymes that usually (but not always) catalyze oxygen atom transfer to or from a substrate, utilizing a Mo=O group as donor or acceptor. An emphasis is placed on the diversity of protein structure and reaction catalyzed by each of the three major families of these enzymes.


Journal of Biological Chemistry | 2008

Substrate Orientation in Xanthine Oxidase CRYSTAL STRUCTURE OF ENZYME IN REACTION WITH 2-HYDROXY-6-METHYLPURINE

James M. Pauff; Jinjin Zhang; Charles E. Bell; Russ Hille

Xanthine oxidoreductase catalyzes the final two steps of purine catabolism and is involved in a variety of pathological states ranging from hyperuricemia to ischemia-reperfusion injury. The human enzyme is expressed primarily in its dehydrogenase form utilizing NAD+ as the final electron acceptor from the enzymes flavin site but can exist as an oxidase that utilizes O2 for this purpose. Central to an understanding of the enzymes function is knowledge of purine substrate orientation in the enzymes molybdenum-containing active site. We report here the crystal structure of xanthine oxidase, trapped at the stage of a critical intermediate in the course of reaction with the slow substrate 2-hydroxy-6-methylpurine at 2.3Å. This is the first crystal structure of a reaction intermediate with a purine substrate that is hydroxylated at its C8 position as is xanthine and confirms the structure predicted to occur in the course of the presently favored reaction mechanism. The structure also corroborates recent work suggesting that 2-hydroxy-6-methylpurine orients in the active site with its C2 carbonyl group interacting with Arg-880 and extends our hypothesis that xanthine binds opposite this orientation, with its C6 carbonyl positioned to interact with Arg-880 in stabilizing the MoV transition state.

Collaboration


Dive into the Russ Hille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitri Niks

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin L. Kirk

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Hongnan Cao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf R. Mendel

Braunschweig University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge