Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russ P. Carstens is active.

Publication


Featured researches published by Russ P. Carstens.


Nature | 2013

A compendium of RNA-binding motifs for decoding gene regulation

Debashish Ray; Hilal Kazan; Kate B. Cook; Matthew T. Weirauch; Hamed Shateri Najafabadi; Xiao Li; Serge Gueroussov; Mihai Albu; Hong Zheng; Ally Yang; Hong Na; Manuel Irimia; Leah H. Matzat; Ryan K. Dale; Sarah A. Smith; Christopher A. Yarosh; Seth M. Kelly; Behnam Nabet; D. Mecenas; Weimin Li; Rakesh S. Laishram; Mei Qiao; Howard D. Lipshitz; Fabio Piano; Anita H. Corbett; Russ P. Carstens; Brendan J. Frey; Richard A. Anderson; Kristen W. Lynch; Luiz O. F. Penalva

RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes.


Molecular Cell | 2009

ESRP1 and ESRP2 Are Epithelial Cell-Type-Specific Regulators of FGFR2 Splicing

Claude C. Warzecha; Trey K. Sato; Behnam Nabet; John B. Hogenesch; Russ P. Carstens

Cell-type-specific expression of epithelial and mesenchymal isoforms of Fibroblast Growth Factor Receptor 2 (FGFR2) is achieved through tight regulation of mutually exclusive exons IIIb and IIIc, respectively. Using an application of cell-based cDNA expression screening, we identified two paralogous epithelial cell-type-specific RNA-binding proteins that are essential regulators of FGFR2 splicing. Ectopic expression of either protein in cells that express FGFR2-IIIc caused a switch in endogenous FGFR2 splicing to the epithelial isoform. Conversely, knockdown of both factors in cells that express FGFR2-IIIb by RNA interference caused a switch from the epithelial to mesenchymal isoform. These factors also regulate splicing of CD44, p120-Catenin (CTNND1), and hMena (ENAH), three transcripts that undergo changes in splicing during the epithelial-to-mesenchymal transition (EMT). These studies suggest that Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are coordinators of an epithelial cell-type-specific splicing program.


The EMBO Journal | 2010

An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition

Claude C. Warzecha; Peng Jiang; Karine Amirikian; Kimberly Dittmar; Hezhe Lu; Shihao Shen; Wei Guo; Yi Xing; Russ P. Carstens

Alternative splicing achieves coordinated changes in post‐transcriptional gene expression programmes through the activities of diverse RNA‐binding proteins. Epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) are cell‐type‐specific regulators of transcripts that switch splicing during the epithelial–mesenchymal transition (EMT). To define a comprehensive programme of alternative splicing that is regulated during the EMT, we identified an extensive ESRP‐regulated splicing network of hundreds of alternative splicing events within numerous genes with functions in cell–cell adhesion, polarity, and migration. Loss of this global ESRP‐regulated epithelial splicing programme induces the phenotypic changes in cell morphology that are observed during the EMT. Components of this splicing signature provide novel molecular markers that can be used to characterize the EMT. Bioinformatics and experimental approaches revealed a high‐affinity ESRP‐binding motif and a predictive RNA map that governs their activity. This work establishes the ESRPs as coordinators of a complex alternative splicing network that adds an important post‐transcriptional layer to the changes in gene expression that underlie epithelial–mesenchymal transitions during development and disease.


Nucleic Acids Research | 2012

MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data

Shihao Shen; Juw Won Park; Jian Huang; Kimberly Dittmar; Zhi-xiang Lu; Qing Zhou; Russ P. Carstens; Yi Xing

Ultra-deep RNA sequencing has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We develop MATS (multivariate analysis of transcript splicing), a Bayesian statistical framework for flexible hypothesis testing of differential alternative splicing patterns on RNA-Seq data. MATS uses a multivariate uniform prior to model the between-sample correlation in exon splicing patterns, and a Markov chain Monte Carlo (MCMC) method coupled with a simulation-based adaptive sampling procedure to calculate the P-value and false discovery rate (FDR) of differential alternative splicing. Importantly, the MATS approach is applicable to almost any type of null hypotheses of interest, providing the flexibility to identify differential alternative splicing events that match a given user-defined pattern. We evaluated the performance of MATS using simulated and real RNA-Seq data sets. In the RNA-Seq analysis of alternative splicing events regulated by the epithelial-specific splicing factor ESRP1, we obtained a high RT–PCR validation rate of 86% for differential exon skipping events with a MATS FDR of <10%. Additionally, over the full list of RT–PCR tested exons, the MATS FDR estimates matched well with the experimental validation rate. Our results demonstrate that MATS is an effective and flexible approach for detecting differential alternative splicing from RNA-Seq data.


RNA Biology | 2009

The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events

Claude C. Warzecha; Shihao Shen; Yi Xing; Russ P. Carstens

Cell-type and tissue-specific alternative splicing events are regulated by combinatorial control involving both abundant RNA binding proteins as well as those with more discrete expression and specialized functions. Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are recently discovered epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the FGFR2, ENAH, CD44, and CTNND1 transcripts. To cataloge a larger set of splicing events under the regulation of the ESRPs we profiled splicing changes induced by RNA interference-mediated knockdown of ESRP1 and ESRP2 expression in a human epithelial cell line using the splicing sensitive Affymetrix Exon ST1.0 Arrays. Analysis of the microarray data resulted in the identification of over a hundred candidate ESRP regulated splicing events. We were able to independently validate 37 of these targets by RT-PCR. The ESRP regulated events encompass all known types of alternative splicing events, most prominent being alternative cassette exons and splicing events leading to alternative 3’ terminal exons. Importantly, a number of these regulated splicing events occur in gene transcripts that encode proteins with well-described roles in the regulation of actin cytoskeleton organization, cell-cell adhesion, cell polarity, and cell migration. In sum, this work reveals a novel list of transcripts differentially spliced in epithelial and mesenchymal cells, implying that coordinated alternative splicing plays a critical role in determination of cell type identity. These results further establish ESRP1 and ESRP2 as global regulators of an epithelial splicing regulatory network.


Molecular and Cellular Biology | 1998

An Intronic Sequence Element Mediates Both Activation and Repression of Rat Fibroblast Growth Factor Receptor 2 Pre-mRNA Splicing

Russ P. Carstens; Wallace L. McKeehan; Mariano A. Garcia-Blanco

ABSTRACT Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) is an example of highly regulated alternative splicing in which exons IIIb and IIIc are utilized in a mutually exclusive manner in different cell types. The importance of this splicing choice is highlighted by studies which indicate that deregulation of the FGF-R2 splicing is associated with progression of prostate cancer. Loss of expression of a IIIb exon-containing isoform of FGF-R2 [FGF-R2 (IIIb)] accompanies the transition of a well-differentiated, androgen-dependent rat prostate cancer cell line, DT3, to the more aggressive, androgen-independent AT3 cell line. We have used transfection of rat FGF-R2 minigenes into DT3 and AT3 cancer cell lines to study the mechanisms that control alternative splicing of rat FGF-R2. Our results support a model in which an importantcis-acting element located in the intron between these alternative exons mediates activation of splicing using the upstream IIIb exon and repression of the downstream IIIc exon in DT3 cells. This element consists of 57 nucleotides (nt) beginning 917 nt downstream of the IIIb exon. Analysis of mutants further demonstrates that an 18-nt “core sequence” within this element is most crucial for its function. Based on our observations, we have termed this sequence element ISAR (for intronic splicing activator and repressor), and we suggest that factors which bind this sequence are required for maintenance of expression of the FGF-R2 (IIIb) isoform.


Molecular and Cellular Biology | 2012

Genome-Wide Determination of a Broad ESRP-Regulated Posttranscriptional Network by High-Throughput Sequencing

Kimberly Dittmar; Peng Jiang; Juw Won Park; Karine Amirikian; Ji Wan; Shihao Shen; Yi Xing; Russ P. Carstens

ABSTRACT Tissue-specific alternative splicing is achieved through the coordinated assembly of RNA binding proteins at specific sites to enhance or silence splicing at nearby splice sites. We used high-throughput sequencing (RNA-Seq) to investigate the complete spectrum of alternative splicing events that are regulated by the epithelium-specific splicing regulatory proteins ESRP1 and ESRP2. We also combined this analysis with direct RNA sequencing (DRS) to reveal ESRP-mediated regulation of alternative polyadenylation. To define binding motifs that mediate direct regulation of splicing and polyadenylation by ESRP, SELEX-Seq analysis was performed, coupling traditional SELEX with high-throughput sequencing. Identification and scoring of high-affinity ESRP1 binding motifs within ESRP target genes allowed the generation of RNA maps that define the position-dependent activity of the ESRPs in regulating cassette exons and alternative 3′ ends. These extensive analyses provide a comprehensive picture of the functions of the ESRPs in an epithelial posttranscriptional gene expression program.


Seminars in Cancer Biology | 2012

Complex changes in alternative pre-mRNA splicing play a central role in the epithelial-to-mesenchymal transition (EMT).

Claude C. Warzecha; Russ P. Carstens

The epithelial-to-mesenchymal transition (EMT) is an important developmental process that is also implicated in disease pathophysiology, such as cancer progression and metastasis. A wealth of literature in recent years has identified important transcriptional regulators and large-scale changes in gene expression programs that drive the phenotypic changes that occur during the EMT. However, in the past couple of years it has become apparent that extensive changes in alternative splicing also play a profound role in shaping the changes in cell behavior that characterize the EMT. While long known splicing switches in FGFR2 and p120-catenin provided hints of a larger program of EMT-associated alternative splicing, the recent identification of the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) began to reveal this genome-wide post-transcriptional network. Several studies have now demonstrated the truly vast extent of this alternative splicing program. The global switches in splicing associated with the EMT add an important additional layer of post-transcriptional control that works in harmony with transcriptional and epigenetic regulation to effect complex changes in cell shape, polarity, and behavior that mediate transitions between epithelial and mesenchymal cell states. Future challenges include the need to investigate the functional consequences of these splicing switches at both the individual gene as well as systems level.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Splicing program of human MENA produces a previously undescribed isoform associated with invasive, mesenchymal-like breast tumors

Francesca Di Modugno; Pierluigi Iapicca; Aaron Boudreau; Marcella Mottolese; Irene Terrenato; Letizia Perracchio; Russ P. Carstens; Angela Santoni; Mina J. Bissell; Paola Nisticò

Human mena (hMENA), a member of the actin cytoskeleton regulators Ena/VASP, is overexpressed in high-risk preneoplastic lesions and in primary breast tumors and has been identified as playing a role in invasiveness and poor prognosis in breast cancers that express HER2. Here we identify a unique isoform, hMENAΔv6, derived from the hMENA alternative splicing program. In an isogenic model of human breast cancer progression, we show that hMENA11a is expressed in premalignant cells, whereas hMENAΔv6 expression is restricted to invasive cancer cells. “Reversion” of the malignant phenotype leads to concurrent down-regulation of all hMENA isoforms. In breast cancer cell lines, isoform-specific hMENA overexpression or knockdown revealed that in the absence of hMENA11a, overexpression of hMENAΔv6 increased cell invasion, whereas overexpression of hMENA11a reduced the migratory and invasive ability of these cells. hMENA11a splicing was shown to be dependent on the epithelial regulator of splicing 1 (ESRP1), and forced expression of ESRP1 in invasive mesenchymal breast cancer cells caused a phenotypic switch reminiscent of a mesenchymal-to-epithelial transition (MET) characterized by changes in the cytoskeletal architecture, reexpression of hMENA11a, and a reduction in cell invasion. hMENA-positive primary breast tumors, which are hMENA11a-negative, are more frequently E-cadherin low in comparison with tumors expressing hMENA11a. These data suggest that polarized and growth-arrested cellular architecture correlates with absence of alternative hMENA isoform expression, and that the hMENA splicing program is relevant to malignant progression in invasive disease.


Journal of Biological Chemistry | 2007

Heterogeneous Ribonucleoprotein M Is a Splicing Regulatory Protein That Can Enhance or Silence Splicing of Alternatively Spliced Exons

Ruben H. Hovhannisyan; Russ P. Carstens

Splicing of fibroblast growth factor receptor 2 (FGFR2) alternative exons IIIb and IIIc is regulated by the auxiliary RNA cis-element ISE/ISS-3 that promotes splicing of exon IIIb and silencing of exon IIIc. Using RNA affinity chromatography, we have identified heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a splicing regulatory factor that binds to ISE/ISS-3 in a sequence-specific manner. Overexpression of hnRNP M promoted exon IIIc skipping in a cell line that normally includes it, and association of hnRNP M with ISE/ISS-3 was shown to contribute to this splicing regulatory function. Thus hnRNP M, along with other members of the hnRNP family of RNA-binding proteins, plays a combinatorial role in regulation of FGFR2 alternative splicing. We also determined that hnRNP M can affect the splicing of several other alternatively spliced exons. This activity of hnRNP M included the ability not only to induce exon skipping but also to promote exon inclusion. This is the first report demonstrating a role for this abundant hnRNP family member in alternative splicing in mammals and suggests that this protein may broadly contribute to the fidelity of splice site recognition and alternative splicing regulation.

Collaboration


Dive into the Russ P. Carstens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Xing

University of California

View shared research outputs
Top Co-Authors

Avatar

Benjamin Cieply

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas W. Bebee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberly Dittmar

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge