Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell A. Norris is active.

Publication


Featured researches published by Russell A. Norris.


Journal of Cellular Biochemistry | 2007

Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues

Russell A. Norris; Brook Damon; Vladimir Mironov; Vladimir Kasyanov; Anand Ramamurthi; Ricardo A. Moreno-Rodriguez; Thomas C. Trusk; Jay D. Potts; Richard L. Goodwin; Jeffrey M. Davis; Stanley Hoffman; Xuejun Wen; Yukiko Sugi; Christine B. Kern; Corey H. Mjaatvedt; Debi Turner; Toru Oka; Simon J. Conway; Jeffery D. Molkentin; Gabor Forgacs; Roger R. Markwald

Periostin is predominantly expressed in collagen‐rich fibrous connective tissues that are subjected to constant mechanical stresses including: heart valves, tendons, perichondrium, cornea, and the periodontal ligament (PDL). Based on these data we hypothesize that periostin can regulate collagen I fibrillogenesis and thereby affect the biomechanical properties of connective tissues. Immunoprecipitation and immunogold transmission electron microscopy experiments demonstrate that periostin is capable of directly interacting with collagen I. To analyze the potential role of periostin in collagen I fibrillogenesis, gene targeted mice were generated. Transmission electron microscopy and morphometric analyses demonstrated reduced collagen fibril diameters in skin dermis of periostin knockout mice, an indication of aberrant collagen I fibrillogenesis. In addition, differential scanning calorimetry (DSC) demonstrated a lower collagen denaturing temperature in periostin knockout mice, reflecting a reduced level of collagen cross‐linking. Functional biomechanical properties of periostin null skin specimens and atrioventricular (AV) valve explant experiments provided direct evidence of the role that periostin plays in regulating the viscoelastic properties of connective tissues. Collectively, these data demonstrate for the first time that periostin can regulate collagen I fibrillogenesis and thereby serves as an important mediator of the biomechanical properties of fibrous connective tissues. J. Cell. Biochem. 101: 695–711, 2007.


Journal of Clinical Investigation | 2010

Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β

Polakit Teekakirikul; Seda Eminaga; Okan Toka; Ronny Alcalai; Libin Wang; Hiroko Wakimoto; Matthew Nayor; Tetsuo Konno; Joshua M. Gorham; Cordula M. Wolf; Jae B. Kim; Joachim P. Schmitt; Jefferey D. Molkentin; Russell A. Norris; Andrew M. Tager; Stanley Hoffman; Roger R. Markwald; Christine E. Seidman; Jonathan G. Seidman

Mutations in sarcomere protein genes can cause hypertrophic cardiomyopathy (HCM), a disorder characterized by myocyte enlargement, fibrosis, and impaired ventricular relaxation. Here, we demonstrate that sarcomere protein gene mutations activate proliferative and profibrotic signals in non-myocyte cells to produce pathologic remodeling in HCM. Gene expression analyses of non-myocyte cells isolated from HCM mouse hearts showed increased levels of RNAs encoding cell-cycle proteins, Tgf-β, periostin, and other profibrotic proteins. Markedly increased BrdU labeling, Ki67 antigen expression, and periostin immunohistochemistry in the fibrotic regions of HCM hearts confirmed the transcriptional profiling data. Genetic ablation of periostin in HCM mice reduced but did not extinguish non-myocyte proliferation and fibrosis. In contrast, administration of Tgf-β-neutralizing antibodies abrogated non-myocyte proliferation and fibrosis. Chronic administration of the angiotensin II type 1 receptor antagonist losartan to mutation-positive, hypertrophy-negative (prehypertrophic) mice prevented the emergence of hypertrophy, non-myocyte proliferation, and fibrosis. Losartan treatment did not reverse pathologic remodeling of established HCM but did reduce non-myocyte proliferation. These data define non-myocyte activation of Tgf-β signaling as a pivotal mechanism for increased fibrosis in HCM and a potentially important factor contributing to diastolic dysfunction and heart failure. Preemptive pharmacologic inhibition of Tgf-β signals warrants study in human patients with sarcomere gene mutations.


Nature Genetics | 2012

Mutations in the TGF-β Repressor SKI Cause Shprintzen-Goldberg Syndrome with Aortic Aneurysm

Alexander J. Doyle; Jefferson J. Doyle; Seneca L. Bessling; Samantha Maragh; Mark E. Lindsay; Dorien Schepers; Elisabeth Gillis; Geert Mortier; Tessa Homfray; Kimberly Sauls; Russell A. Norris; Nicholas D Huso; Dan Leahy; David W Mohr; Mark J. Caulfield; Alan F. Scott; A Destree; Raoul C. M. Hennekam; Pamela Arn; Cynthia J. Curry; Lut Van Laer; Andrew S. McCallion; Bart Loeys; Harry C. Dietz

Elevated transforming growth factor (TGF)-β signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-β signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-β in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-β activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-β signaling cascades and higher expression of TGF-β–responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-β signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.


Developmental Biology | 2012

Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart.

Andy Wessels; Maurice J.B. van den Hoff; Richard F. Adamo; Aimee L. Phelps; Marie M. Lockhart; Kimberly Sauls; Laura E. Briggs; Russell A. Norris; Bram van Wijk; José M. Pérez-Pomares; Robert W. Dettman; John B.E. Burch

The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart, we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12. The migration of epicardially derived fibroblasts toward the interface between compact and trabecular myocardium is completed around ED14. Remarkably, epicardially derived fibroblasts do not migrate into the trabecular myocardium until after ED17. Migration of EPDCs into the atrioventricular cushion mesenchyme commences around ED12. As development progresses, the number of EPDCs increases significantly, specifically in the leaflets which derive from the lateral atrioventricular cushions. In these developing leaflets the epicardially derived fibroblasts eventually largely replace the endocardially derived cells. Importantly, the contribution of EPDCs to the leaflets derived from the major AV cushions is very limited. The differential contribution of EPDCs to the various leaflets of the atrioventricular valves provides a new paradigm in valve development and could lead to new insights into the pathogenesis of abnormalities that preferentially affect individual components of this region of the heart. The notion that there is a significant difference in the contribution of epicardially and endocardially derived cells to the individual leaflets of the atrioventricular valves has also important pragmatic consequences for the use of endocardial and epicardial cre-mouse models in studies of heart development.


Annals of the New York Academy of Sciences | 2008

Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin.

Russell A. Norris; Thomas K. Borg; Jonathan T. Butcher; Troy A. Baudino; Indroneal Banerjee; Roger R. Markwald

The neonatal heart undergoes normal hypertrophy or compensation to complete development and adapt to increased systolic pressures. Hypertrophy and increased neonatal wall stiffness are associated with a doubling of the number of fibroblasts and de novo formation of collagen. Normal postnatal remodeling is completed within 3–4 weeks after birth but can be rekindled in adult life in response to environmental signals that lead to pathological hypertrophy, fibrosis, and heart failure. The signals that trigger fibroblast and collagen formation (fibrosis) as well as the origin and differentiation of the cardiac fibroblast lineage are not well understood. Using mice studies and a single‐cell engraftment model, we have shown that cardiac fibroblasts are derived from two extracardiac sources: the embryonic proepicardial organ and the recruitment of circulating bone marrow cells of hematopoietic stem cell origin. Periostin, a matricellular protein, is normally expressed in differentiating fibroblasts but its expression is elevated several fold in pathological remodeling and heart failure. Our hypothesis that periostin is profibrogenic (i.e., it promotes differentiation of progenitor mesenchymal cells into fibroblasts and their secretion and compaction of collagen) was tested using isolated and cultured embryonic, neonatal, and adult wild‐type and periostin‐null, nonmyocyte populations. Our findings indicate that abrogation of periostin by targeted gene deletion inhibits differentiation of nonmyocyte progenitor cells or permits misdirection into a cardiomyocyte lineage. However, if cultured with periostin or forced to express periostin, they became fibroblasts. Periostin plays a significant role in promoting fibrogenesis residual stress, and tensile testings indicated that periostin played an essential regulatory role in maintaining the biomechanical properties of the adult myocardium. These findings indicate that periostin is a profibrogenic matricellular protein that promotes collagen fibrogenesis, inhibits differentiation of progenitor cells into cardiomyocytes, and is essential for maintaining the biomechanical properties of the adult myocardium.


Journal of Clinical Investigation | 2014

Angiotensin II–dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis

Elena M. Gallo; David Loch; Jennifer Habashi; Juan F. Calderon; Yichun Chen; Djahida Bedja; Christel Van Erp; Elizabeth E. Gerber; Sarah J. Parker; Kimberly Sauls; Daniel P. Judge; Sara K. Cooke; Mark E. Lindsay; Rosanne Rouf; Loretha Myers; Colette M. J. ap Rhys; Kathleen C. Kent; Russell A. Norris; David L. Huso; Harry C. Dietz

Loeys-Dietz syndrome (LDS) is a connective tissue disorder that is characterized by a high risk for aneurysm and dissection throughout the arterial tree and phenotypically resembles Marfan syndrome. LDS is caused by heterozygous missense mutations in either TGF-β receptor gene (TGFBR1 or TGFBR2), which are predicted to result in diminished TGF-β signaling; however, aortic surgical samples from patients show evidence of paradoxically increased TGF-β signaling. We generated 2 knockin mouse strains with LDS mutations in either Tgfbr1 or Tgfbr2 and a transgenic mouse overexpressing mutant Tgfbr2. Knockin and transgenic mice, but not haploinsufficient animals, recapitulated the LDS phenotype. While heterozygous mutant cells had diminished signaling in response to exogenous TGF-β in vitro, they maintained normal levels of Smad2 phosphorylation under steady-state culture conditions, suggesting a chronic compensation. Analysis of TGF-β signaling in the aortic wall in vivo revealed progressive upregulation of Smad2 phosphorylation and TGF-β target gene output, which paralleled worsening of aneurysm pathology and coincided with upregulation of TGF-β1 ligand expression. Importantly, suppression of Smad2 phosphorylation and TGF-β1 expression correlated with the therapeutic efficacy of the angiotensin II type 1 receptor antagonist losartan. Together, these data suggest that increased TGF-β signaling contributes to postnatal aneurysm progression in LDS.


Atherosclerosis | 2010

Periostin mediates vascular smooth muscle cell migration through the integrins ανβ3 and ανβ5 and focal adhesion kinase (FAK) pathway

Guohong Li; Rong Jin; Russell A. Norris; Lin Zhang; Shiyong Yu; Fusheng Wu; Roger R. Markwald; Anil Nanda; Simon J. Conway; Susan S. Smyth; D. Neil Granger

Smooth muscle cell (SMC) migration involves interactions of integrin receptors with extracellular matrix (ECM) and is an important process of neointimal formation in atherosclerosis and restenosis after vascular interventions. Previous studies have shown that periostin (PN), a novel ECM protein, is upregulated in rat carotid artery after balloon injury, and growth factor-stimulated expression of PN promotes SMC migration in vitro. Here, we address the mechanism by which PN-integrin interaction mediates SMC migration in vitro. Aortic SMCs isolated from PN null mice exhibited a significantly reduced ability to migrate and proliferate in vitro. Endogenous PN protein was absent and very low in the culture medium from the primary cultures of PN-/- and wildtype SMCs, respectively. In both types of SMCs, adenovirus-mediated overexpression of HA-tagged PN to a similar extent, which induced a robust cell migration concomitantly with an increase in beta3-integrin expression and phosphorylation of FAK (Tyr397). Furthermore, in cultured human SMCs, specific integrin blocking antibodies showed that interactions of PN-alphanubeta3 and PN-alphanubeta5, but not PN-beta1 integrins, are required for SMC migration. Inhibition of FAK signaling by overexpression of an endogenous FAK inhibitor termed FRNK (FAK-related nonkinase) significantly attenuated FAK (Tyr397) phosphorylation and the SMC migration induced by PN. These results reveal a mechanism whereby PN mediates vascular SMC migration through an interaction with alphaV-integrins (mainly alphanubeta3) and subsequent activation of FAK pathway.


Annals of the New York Academy of Sciences | 2010

Developmental basis of adult cardiovascular diseases: valvular heart diseases.

Roger R. Markwald; Russell A. Norris; Ricardo A. Moreno-Rodriguez; Robert A. Levine

In this chapter, we review the working hypothesis that the roots of adult valvular heart disease (VHD) lie in embryonic development. Valvulogenesis is a complex process in which growth factors signal the process of endocardium‐to‐mesenchyme transformation (EMT) resulting in formation of prevalvular “cushions.” The post‐EMT processes, whereby cushions are morphogenetically remolded into valve leaflets, are less well understood, but they require periostin. Mice with targeted deletion of periostin develop degenerative changes similar to human forms of VHD. Mitral valves are also abnormally elongated in hypertrophic cardiomyopathy (HCM), which plays an important role in clinical disease expression. However, the mechanism for this is unclear, but correlates with enhanced expression of periostin in a specific population of ventricular cells derived from the embryonic proepicardial organ, which accumulate at sites where valvular endocardial EMT is reactivated. Collectively, these findings suggest that developmental mechanisms underlie adult valve responses to genetic mutations in degenerative VHD and HCM.


Journal of Cell Communication and Signaling | 2009

The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology

Russell A. Norris; Ricardo A. Moreno-Rodriguez; Stanley Hoffman; Roger R. Markwald

Periostin is a member of a growing family of matricellular proteins, defined by their ability to interact with components of the extracellular milieu, and with receptors at the cell surface. Through these interactions, periostin has been shown to play a crucial role as a profibrogenic molecule during tissue morphogenesis. Tissues destined to become fibrous structures are dependent on cooperative interactions between periostin and its binding partners, whereas in its absence, these structures either totally or partially fail to become mature fibrous entities. Within the heart, fibrogenic differentiation is required for normal tissue maturation, remodeling and function, as well as in response to a pathological myocardial insult. In this review, aspects related to the function of periostin during cardiac morphogenesis, remodeling and pathology are summarized.


Developmental Biology | 2008

BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis

Kei Inai; Russell A. Norris; Stanley Hoffman; Roger R. Markwald; Yukiko Sugi

Atrioventricular (AV) endocardium transforms into the cushion mesenchyme, the primordia of the valves and membranous septa, through epithelial-mesenchymal transformation (EMT). While bone morphogenetic protein (BMP)-2 is known to be critical for AV EMT, the role of BMP-2 in post-EMT AV valvulogenesis remains to be elucidated. To find BMP signaling loops, we first localized Type I BMP receptors (BMPRs), BMPR-1A (ALK3), -1B (ALK6) and ALK2 in AV cushion mesenchyme in stage-24 chick embryos. Based on the BMP receptor expression pattern, we examined the functional roles of BMP-2 and BMP signaling in post-EMT valvulogenesis by using stage-24 AV cushion mesenchymal cell aggregates cultured on 3D-collagen gels. Exogenous BMP-2 or constitutively active (ca) BMPR-1B (ALK6)-virus treatments induced migration of the mesenchymal cells into the collagen gels, whereas noggin, an antagonist of BMPs, or dominant-negative (dn) BMPR-1 B (ALK6)-virus treatments reduced cell migration from the mesenchymal cell aggregates. Exogenous BMP-2 or caBMPR-1B (ALK6) treatments significantly promoted expression of an extracellular matrix (ECM) protein, periostin, a known valvulogenic matrix maturation mediator, at both mRNA and protein levels, whereas periostin expression was repressed by adding noggin or dnBMPR-1B (ALK6)-virus to the culture. Moreover, transcripts of Twist and Id1, which have been implicated in cell migration in embryogenesis and activation of the periostin promoter, were induced by BMP-2 but repressed by noggin in cushion mesenchymal cell cultures. These data provide evidence that BMP-2 and BMP signaling induce biological processes involved in early AV valvulogenesis, i.e. mesenchymal cell migration and expression of periostin, indicating critical roles for BMP signaling in post-EMT AV cushion tissue maturation and differentiation.

Collaboration


Dive into the Russell A. Norris's collaboration.

Top Co-Authors

Avatar

Roger R. Markwald

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberly Sauls

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Stanley Hoffman

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Andy Wessels

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Ricardo A. Moreno-Rodriguez

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Corey H. Mjaatvedt

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Katelynn Toomer

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Kern

Hospital Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge