Russell B McKinley
Scion
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell B McKinley.
New Zealand journal of forestry science | 2015
Mark O. Kimberley; Dave Cown; Russell B McKinley; John R. Moore; Leslie J. Dowling
BackgroundDensity is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand.MethodsThe model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem.ResultsThe radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage.ConclusionsThe analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees.
New Zealand journal of forestry science | 2014
Sue D Carson; Dave Cown; Russell B McKinley; John R. Moore
BackgroundTo understand the underlying control of patterns of important wood properties is fundamental to silvicultural control of wood quality and genetic selection. This study examines the influences of site, silviculture and seedlot on diameter growth, wood density and estimated wood stiffness in mid-rotation radiata pine (Pinus radiata D Don) stands across New Zealand.MethodsSelected treatment combinations were assessed across five sites in a 17-year-old experiment comparing silvicultural treatments and improved breeds of radiata pine. Diameter at breast height (DBH), and stress-wave velocity (an indicator of wood stiffness) and outerwood (outermost five growth rings) basic density at breast-height were assessed for ten trees from each plot in the experiment.ResultsThere were large differences in DBH and wood properties between sites. Silviculture (stand density) had a stronger influence than seedlot on DBH and stress-wave velocity, while the converse applied to outerwood density. There was a positive relationship between stand density and both stress-wave velocity and outerwood density. Trees in the un-pruned 500 stems ha−1 treatment had larger DBH, lower outerwood density and lower stress-wave velocity than trees in the 400 stems ha−1 pruned treatment. This suggests that silvicultural manipulation (pruning) of green crown length is important for controlling both growth and wood properties.ConclusionsResults from this study support previous research which indicates that thinning, and to a lesser extent pruning, have a strong impact on DBH, stress-wave velocity and outerwood density. Increasing stand density is consistently associated with stiffer and denser outerwood.
New Zealand journal of forestry science | 2014
John R. Moore; Dave Cown; Russell B McKinley
BackgroundMicrofibril angle (MFA) is a property of wood cell walls that has a strong influence on end-product quality, particularly for solid timber. Forest managers, tree breeders and wood processors require more quantitative information on the inter- and intra-stem variation in MFA in order to understand the impacts of their decisions on wood quality. The aim of this study was to develop parametric models that can be used to predict the intra- and inter-stem variation in MFA in radiata pine (Pinus radiata D. Don) trees growing in New ZealandMethodsEmpirical models were developed using a dataset that contained records from 347 trees in which radial profiles of MFA have been measured at different heights up the stem. Radial variation in MFA was modelled as a function of cambial age using both a modified logistic function and a modified Michaelis-Menten equation. Additional terms were added to these models to account for differences in MFA with relative height up the stem.ResultsValues of MFA ranged from more than 40° near the pith to approximately 10-15° in the outerwood. Values greater than 30° were largely confined to the inner rings of the butt logs. A variance components analysis showed that most of the variation in MFA occurred within stems, with less than 15% of the variation due to differences between sites. The final models were able to account for 57-63% of the variation in MFA and inclusion of a relative height term significantly improved the model fit.ConclusionsRadiata pine has a region of high microfibril angle in the first 10-15 growth rings from the pith, particularly at the base of the tree. Growth rate had a small positive influence on average MFA (wider rings resulting in higher MFA values). Site differences were small, indicating that regional variation in wood stiffness is due more to the known trends in wood density. The models developed here can be coupled to growth models to examine how the combination of site productivity and silvicultural regime affect the size of the central zone containing high MFA wood.
New Zealand journal of forestry science | 2015
John R. Moore; Dave Cown; Russell B McKinley; Charles O. Sabatia
BackgroundManipulation of stand density and choice of genetic material are two key mechanisms through which forest managers can influence tree growth and wood properties. Past silvicultural practices in New Zealand have been characterised by early thinning to relatively wide spacing, while tree improvement programmes have primarily focussed on growth and form. The aim of this study was to quantify the impacts of stand density and past genetic selections on the wood properties of radiata pine (Pinus radiata D. Don).MethodsStress-wave velocity, wood density, microfibril angle (MFA) and modulus of elasticity (MOE) were measured on trees and wood samples taken from a 15-year-old silvicultural and tree breeds trial located in Canterbury, New Zealand. The focus of this study was comparison of seedlots with genetic ratings of GF6 and GF25. Data from pruned stands with final densities of 100, 200 and 400 stems ha−1 were compared as were data from unpruned stands with stand densities of 200, 400, 600 and 1000 stems ha−1.ResultsStress-wave velocity of trees was affected by final stand density, with the lowest values recorded from trees in the 100 and 200 stems ha−1 treatments. Values for wood MFA and MOE both showed the greatest amount of change when final stand density was less than 400 stems ha−1. Trees from the GF25-rated seedlot had wood density that was approximately 34 kg m−3 lower than trees from the GF6-rated seedlot.ConclusionVery high stand densities are not required in order to influence wood properties, but early thinning to low stand densities should be avoided. Such results are of practical importance to forestry managers.
Heredity | 2018
Mari Suontama; Jaroslav Klápště; Emily Telfer; Natalie Graham; Toby Stovold; Charlie Low; Russell B McKinley; Heidi Dungey
Published online: 6 July 2018This article was originally published under standard licence, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the paper have been modified accordingly.
Canadian Journal of Forest Research | 2006
Hailong Wang; Mark O. Kimberley; Guna N. Magesan; Russell B McKinley; John Lee; John M. Lavery; Pat D.F. Hodgkiss; T. W. Payn; Peter J. Wilks; Craig R. Fisher; Don L. McConchie
Forestry | 2018
John R. Moore; Jonathan P. Dash; John Lee; Russell B McKinley; Heidi S. Dungey
New Zealand journal of forestry science | 2015
John R. Moore; Dave Cown; Russell B McKinley
Trees-structure and Function | 2014
John R. Moore; David J. Cown; John Lee; Russell B McKinley; Rod Brownlie; Trevor Jones; Geoffrey M. Downes
New Zealand journal of forestry science | 2017
Mark O. Kimberley; Russell B McKinley; David J. Cown; John R. Moore