Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell Dushin is active.

Publication


Featured researches published by Russell Dushin.


Chemistry & Biology | 2013

Location Matters: Site of Conjugation Modulates Stability and Pharmacokinetics of Antibody Drug Conjugates

Pavel Strop; Shu-Hui Liu; Magdalena Grazyna Dorywalska; Kathy Delaria; Russell Dushin; Thomas-Toan Tran; Wei-Hsien Ho; Santiago E. Farias; Meritxell Galindo Casas; Yasmina Noubia Abdiche; Dahui Zhou; Ramalakshmi Y. Chandrasekaran; Caroline Samain; Carole M. Loo; Andrea Rossi; Mathias Rickert; Stellanie Krimm; Teresa Wong; Sherman Michael Chin; Jessica Yu; Jeanette Dilley; Javier Chaparro-Riggers; Gary Frederick Filzen; Christopher J. O’Donnell; Fang Wang; Jeremy Myers; Jaume Pons; David L. Shelton; Arvind Rajpal

Antibody drug conjugates (ADCs) are a therapeutic class offering promise for cancer therapy. The attachment of cytotoxic drugs to antibodies can result in an effective therapy with better safety potential than nontargeted cytotoxics. To understand the role of conjugation site, we developed an enzymatic method for site-specific antibody drug conjugation using microbial transglutaminase. This allowed us to attach diverse compounds at multiple positions and investigate how the site influences stability, toxicity, and efficacy. We show that the conjugation site has significant impact on ADC stability and pharmacokinetics in a species-dependent manner. These differences can be directly attributed to the position of the linkage rather than the chemical instability, as was observed with a maleimide linkage. With this method, it is possible to produce homogeneous ADCs and tune their properties to maximize the therapeutic window.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A general approach to site-specific antibody drug conjugates

Feng Tian; Yingchun Lu; Anthony Manibusan; Aaron Sellers; Hon Tran; Ying Sun; Trung Phuong; Richard S. Barnett; Brad Hehli; Frank Song; Michael J. DeGuzman; Semsi Ensari; Jason Pinkstaff; Lorraine Sullivan; Sandra L. Biroc; Ho Cho; Peter G. Schultz; John F. DiJoseph; Maureen Dougher; Dangshe Ma; Russell Dushin; Mauricio Leal; Lioudmila Tchistiakova; Eric Feyfant; Hans-Peter Gerber; Puja Sapra

Significance Here we demonstrate the ability to genetically incorporate nonnative amino acids into proteins in mammalian cells using both transient and stable platform expression systems that provide yields and fidelities compatible with commercial applications. To illustrate the utility of this methodology we have generated chemically homogeneous antibody drug conjugates (NDCs) with precise control over the site and stoichiometry of drug conjugation. In rodent xenograft models these NDCs display improved properties, including half-life, efficacy and safety, relative to conventional heterogeneous ADCs. These advances allow the generation of therapeutic antibody drug conjugates with medicinal chemistry like control over structure, which should greatly facilitate the optimization of their pharmacological activities. Using an expanded genetic code, antibodies with site-specifically incorporated nonnative amino acids were produced in stable cell lines derived from a CHO cell line with titers over 1 g/L. Using anti-5T4 and anti-Her2 antibodies as model systems, site-specific antibody drug conjugates (NDCs) were produced, via oxime bond formation between ketones on the side chain of the incorporated nonnative amino acid and hydroxylamine functionalized monomethyl auristatin D with either protease-cleavable or noncleavable linkers. When noncleavable linkers were used, these conjugates were highly stable and displayed improved in vitro efficacy as well as in vivo efficacy and pharmacokinetic stability in rodent models relative to conventional antibody drug conjugates conjugated through either engineered surface-exposed or reduced interchain disulfide bond cysteine residues. The advantages of the oxime-bonded, site-specific NDCs were even more apparent when low–antigen-expressing (2+) target cell lines were used in the comparative studies. NDCs generated with protease-cleavable linkers demonstrated that the site of conjugation had a significant impact on the stability of these rationally designed prodrug linkers. In a single-dose rat toxicology study, a site-specific anti-Her2 NDC was well tolerated at dose levels up to 90 mg/kg. These experiments support the notion that chemically defined antibody conjugates can be synthesized in commercially relevant yields and can lead to antibody drug conjugates with improved properties relative to the heterogeneous conjugates formed by nonspecific chemical modification.


Antimicrobial Agents and Chemotherapy | 2004

Mechanism of Action of the Mannopeptimycins, a Novel Class of Glycopeptide Antibiotics Active against Vancomycin-Resistant Gram-Positive Bacteria

Alexey Ruzin; Guy Singh; Anatoly Severin; Youjun Yang; Russell Dushin; Alan G. Sutherland; Albert Minnick; Michael Greenstein; Michael K. May; David M. Shlaes; Patricia A. Bradford

ABSTRACT The naturally occurring mannopeptimycins (formerly AC98-1 through AC98-5) are a novel class of glycopeptide antibiotics that are active against a wide variety of gram-positive bacteria. The structures of the mannopeptimycins suggested that they might act by targeting cell wall biosynthesis, similar to other known glycopeptide antibiotics; but the fact that the mannopeptimycins retain activity against vancomycin-resistant organisms suggested that they might have a unique mode of action. By using a radioactive mannopeptimycin derivative bearing a photoactivation ligand, it was shown that mannopeptimycins interact with the membrane-bound cell wall precursor lipid II [C55-MurNAc-(peptide)-GlcNAc] and that this interaction is different from the binding of other lipid II-binding antibiotics such as vancomycin and mersacidin. The antimicrobial activities of several mannopeptimycin derivatives correlated with their affinities toward lipid II, suggesting that the inhibition of cell wall biosynthesis was primarily through lipid II binding. In addition, it was shown that mannopeptimycins bind to lipoteichoic acid in a rather nonspecific interaction, which might facilitate the accumulation of antibiotic on the bacterial cell surface.


Molecular Cancer Therapeutics | 2013

Long-term Tumor Regression Induced by an Antibody–Drug Conjugate That Targets 5T4, an Oncofetal Antigen Expressed on Tumor-Initiating Cells

Puja Sapra; Marc Damelin; John F. DiJoseph; Kimberly Marquette; Kenneth G. Geles; Jonathan Golas; Maureen Dougher; Bitha Narayanan; Andreas Giannakou; Kiran Khandke; Russell Dushin; Elana Ernstoff; Judy Lucas; Mauricio Leal; George Hu; Christopher J. O'Donnell; Lioudmila Tchistiakova; Robert T. Abraham; Hans-Peter Gerber

Antibody–drug conjugates (ADC) represent a promising therapeutic modality for the clinical management of cancer. We sought to develop a novel ADC that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells (TIC), which comprise the most aggressive cell population in the tumor. We optimized an anti-5T4 ADC (A1mcMMAF) by sulfydryl-based conjugation of the humanized A1 antibody to the tubulin inhibitor monomethylauristatin F (MMAF) via a maleimidocaproyl linker. A1mcMMAF exhibited potent in vivo antitumor activity in a variety of tumor models and induced long-term regressions for up to 100 days after the last dose. Strikingly, animals showed pathologic complete response in each model with doses as low as 3 mg antibody/kg dosed every 4 days. In a non–small cell lung cancer patient-derived xenograft model, in which 5T4 is preferentially expressed on the less differentiated tumor cells, A1mcMMAF treatment resulted in sustained tumor regressions and reduced TIC frequency. These results highlight the potential of ADCs that target the most aggressive cell populations within tumors, such as TICs. In exploratory safety studies, A1mcMMAF exhibited no overt toxicities when administered to cynomolgus monkeys at doses up to 10 mg antibody/kg/cycle × 2 and displayed a half-life of 5 days. The preclinical efficacy and safety data established a promising therapeutic index that supports clinical testing of A1mcMMAF. Mol Cancer Ther; 12(1); 38–47. ©2012 AACR.


Bioconjugate Chemistry | 2015

Effect of attachment site on stability of cleavable antibody drug conjugates.

Magdalena Grazyna Dorywalska; Pavel Strop; Jody A. Melton-Witt; Adela Hasa-Moreno; Santiago E. Farias; Meritxell Galindo Casas; Kathy Delaria; Victor Lui; Kris Poulsen; Carole M. Loo; Stellanie Krimm; Gary Louis Bolton; Ludivine Moine; Russell Dushin; Thomas-Toan Tran; Shu-Hui Liu; Mathias Rickert; Davide Foletti; David L. Shelton; Jaume Pons; Arvind Rajpal

The systemic stability of the antibody-drug linker is crucial for delivery of an intact antibody-drug conjugate (ADC) to target-expressing tumors. Linkers stable in circulation but readily processed in the target cell are necessary for both safety and potency of the delivered conjugate. Here, we report a range of stabilities for an auristatin-based payload site-specifically attached through a cleavable valine-citrulline-p-aminobenzylcarbamate (VC-PABC) linker across various sites on an antibody. We demonstrate that the conjugation site plays an important role in determining VC-PABC linker stability in mouse plasma, and that the stability of the linker positively correlates with ADC cytotoxic potency both in vitro and in vivo. Furthermore, we show that the VC-PABC cleavage in mouse plasma is not mediated by Cathepsin B, the protease thought to be primarily responsible for linker processing in the lysosomal degradation pathway. Although the VC-PABC cleavage is not detected in primate plasma in vitro, linker stabilization in the mouse is an essential prerequisite for designing successful efficacy and safety studies in rodents during preclinical stages of ADC programs. The divergence of linker metabolism in mouse plasma and its intracellular cleavage offers an opportunity for linker optimization in the circulation without compromising its efficient payload release in the target cell.


Antimicrobial Agents and Chemotherapy | 2004

Comparative In Vitro Activities of AC98-6446, a Novel Semisynthetic Glycopeptide Derivative of the Natural Product Mannopeptimycin α, and Other Antimicrobial Agents against Gram-Positive Clinical Isolates

Peter J. Petersen; Ting-Zhong Wang; Russell Dushin; Patricia A. Bradford

ABSTRACT AC98-6446 is a novel semisynthetic cyclic glycopeptide antibiotic related to the natural product mannopeptimycin α (AC98-1). In the present study the activity of AC98-6446 was evaluated against a variety of recent clinical gram-positive pathogens including multiply resistant strains. AC98-6446 demonstrated similar potent activities against methicillin-susceptible and methicillin-resistant staphylococci and glycopeptide-intermediate staphylococcal isolates (MICs at which 90% of isolates are inhibited [MIC90s], 0.03 to 0.06 μg/ml). AC98-6446 also demonstrated good activities against both vancomycin-resistant and -susceptible strains of enterococci (MIC90s, 0.12 and 0.25 μg/ml, respectively) as well as against streptococcal strains (MIC90s, ≤ 0.008 to 0.03 μg/ml). AC98-6446 demonstrated bactericidal activity in terms of the reduction in the viable counts (>3 log10 CFU/ml) of staphylococcal and streptococcal isolates and a marked decrease in the viable counts of most enterococcal strains (from 0.2 to 2.5 log10 CFU/ml). Unlike vancomycin, which demonstrates time-dependent killing, AC98-6446 demonstrated concentration-dependent killing. The potent activity, novel structure, and bactericidal activity demonstrated by AC98-6446 make it an attractive candidate for further development.


Nature Biotechnology | 2015

Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading

Pavel Strop; Kathy Delaria; Davide Foletti; Jody Melton Witt; Adela Hasa-Moreno; Kris Poulsen; Meritxell Galindo Casas; Magdalena Grazyna Dorywalska; Santiago E. Farias; Ariel Pios; Victor Lui; Russell Dushin; Dahui Zhou; Thayalan Navaratnam; Thomas-Toan Tran; Janette Sutton; Kevin Lindquist; Bora Han; Shu-Hui Liu; David L. Shelton; Jaume Pons; Arvind Rajpal

Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading


Molecular Cancer Therapeutics | 2016

Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design

Magdalena Grazyna Dorywalska; Russell Dushin; Ludivine Moine; Santiago E. Farias; Dahui Zhou; Thayalan Navaratnam; Victor Lui; Adela Hasa-Moreno; Meritxell Galindo Casas; Thomas-Toan Tran; Kathy Delaria; Shu-Hui Liu; Davide Foletti; Christopher J. O'Donnell; Jaume Pons; David L. Shelton; Arvind Rajpal; Pavel Strop

The degree of stability of antibody–drug linkers in systemic circulation, and the rate of their intracellular processing within target cancer cells are among the key factors determining the efficacy of antibody–drug conjugates (ADC) in vivo. Previous studies demonstrated the susceptibility of cleavable linkers, as well as auristatin-based payloads, to enzymatic cleavage in rodent plasma. Here, we identify Carboxylesterase 1C as the enzyme responsible for the extracellular hydrolysis of valine-citrulline-p-aminocarbamate (VC-PABC)-based linkers in mouse plasma. We further show that the activity of Carboxylesterase 1C towards VC-PABC–based linkers, and consequently the stability of ADCs in mouse plasma, can be effectively modulated by small chemical modifications to the linker. While the introduced modifications can protect the VC-PABC–based linkers from extracellular cleavage, they do not significantly alter the intracellular linker processing by the lysosomal protease Cathepsin B. The distinct substrate preference of the serum Carboxylesterase 1C offers the opportunity to modulate the extracellular stability of cleavable ADCs without diminishing the intracellular payload release required for ADC efficacy. Mol Cancer Ther; 15(5); 958–70. ©2016 AACR.


Science Translational Medicine | 2017

A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions

Marc Damelin; Alexander John Bankovich; Jeffrey Bernstein; Justin Lucas; Liang Chen; Samuel Williams; Albert H. Park; Jorge Aguilar; Elana Ernstoff; Manoj Charati; Russell Dushin; Monette Aujay; Christina R. Lee; Hanna Ramoth; Milly Milton; Johannes Hampl; Sasha Lazetic; Virginia Pulito; Edward Rosfjord; Yongliang Sun; Lindsay King; Frank Barletta; Alison Betts; Magali Guffroy; Hadi Falahatpisheh; Christopher J. O’Donnell; Robert A. Stull; Marybeth A. Pysz; Paul Anthony Escarpe; David R. Liu

PTK7 is a tumor-initiating cell antigen, which can be targeted with an antibody-drug conjugate to confer sustained tumor regressions. Initiating an antitumor attack Cancer is notorious for relapsing after treatment, making it difficult to eradicate from a patient’s body. Such relapses are driven by tumor-initiating cells, a type of stem cells that give rise to tumors. Damelin et al. determined that a protein called PTK7 is frequently present on tumor-initiating cells and developed an antibody-drug conjugate for targeting it. The authors demonstrated the effectiveness of this therapy in mouse models of several tumor types and confirmed that it reduces tumor-initiating cells and outperforms standard chemotherapy. The antibody-drug conjugate also had some unexpected benefits, reducing tumor angiogenesis and promoting antitumor immunity, all of which may contribute to its effectiveness. Disease relapse after treatment is common in triple-negative breast cancer (TNBC), ovarian cancer (OVCA), and non–small cell lung cancer (NSCLC). Therapies that target tumor-initiating cells (TICs) should improve patient survival by eliminating the cells that can drive tumor recurrence and metastasis. We demonstrate that protein tyrosine kinase 7 (PTK7), a highly conserved but catalytically inactive receptor tyrosine kinase in the Wnt signaling pathway, is enriched on TICs in low-passage TNBC, OVCA, and NSCLC patient–derived xenografts (PDXs). To deliver a potent anticancer drug to PTK7-expressing TICs, we generated a targeted antibody-drug conjugate (ADC) composed of a humanized anti-PTK7 monoclonal antibody, a cleavable valine-citrulline–based linker, and Aur0101, an auristatin microtubule inhibitor. The PTK7-targeted ADC induced sustained tumor regressions and outperformed standard-of-care chemotherapy. Moreover, the ADC specifically reduced the frequency of TICs, as determined by serial transplantation experiments. In addition to reducing the TIC frequency, the PTK7-targeted ADC may have additional antitumor mechanisms of action, including the inhibition of angiogenesis and the stimulation of immune cells. Together, these preclinical data demonstrate the potential for the PTK7-targeted ADC to improve the long-term survival of cancer patients.


Bioorganic & Medicinal Chemistry Letters | 2003

Thiourea inhibitors of herpes viruses. Part 1: bis-(aryl)thiourea inhibitors of CMV.

Jonathan David Bloom; Martin Joseph Digrandi; Russell Dushin; Kevin Joseph Curran; Adma Antonia Ross; Emily Boucher Norton; Eugene A. Terefenko; Thomas R. Jones; Boris Feld; Stanley Lang

Bis-(aryl)thioureas were found to be potent and selective inhibitors of cytomegalovirus (CMV) in cultured HFF cells. Of these, the thiazole analogue 38 was investigated as a potential development candidate.

Collaboration


Dive into the Russell Dushin's collaboration.

Top Co-Authors

Avatar

Pavel Strop

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Stanley Lang

Valeant Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind Rajpal

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge