Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell E. Gorga is active.

Publication


Featured researches published by Russell E. Gorga.


Journal of Composite Materials | 2006

Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview

Farzana Hussain; Mehdi Hojjati; Masami Okamoto; Russell E. Gorga

This review is designed to be a comprehensive source for polymer nanocomposite research, including fundamental structure/property relationships, manufacturing techniques, and applications of polymer nanocomposite materials. In addition to presenting the scientific framework for the advances in polymer nanocomposite research, this review focuses on the scientific principles and mechanisms in relation to the methods of processing and manufacturing with a discussion on commercial applications and health/safety concerns (a critical issue for production and scale-up). Hence, this review offers a comprehensive discussion on technology, modeling, characterization, processing, manufacturing, applications, and health/safety concerns for polymer nanocomposites.


Biomacromolecules | 2008

Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide.

Satyajeet S. Ojha; Derrick Stevens; Torissa Hoffman; Kelly Stano; Rebecca R. Klossner; Mary Scott; Wendy E. Krause; Laura Clarke; Russell E. Gorga

Chitosan is an abundantly common, naturally occurring, polysaccharide biopolymer. Its biocompatible, biodegradable, and antimicrobial properties have led to significant research toward biological applications such as drug delivery, artificial tissue scaffolds for functional tissue engineering, and wound-healing dressings. For applications such as tissue scaffolding, formation of highly porous mats of nanometer-sized fibers, such as those fabricated via electrospinning, may be quite important. Previously, strong acidic solvents and blending with synthetic polymers have been used to achieve electrospun nanofibers containing chitosan. As an alternative approach, in this work, polyethylene oxide (PEO) has been used as a template to fabricate chitosan nanofibers by electrospinning in a core-sheath geometry, with the PEO sheath serving as a template for the chitosan core. Solutions of 3 wt % chitosan (in acetic acid) and 4 wt % PEO (in water) were found to have matching rheological properties that enabled efficient core-sheath fiber formation. After removing the PEO sheath by washing with deionized water, chitosan nanofibers were obtained. Electron microscopy confirmed nanofibers of approximately 250 nm diameter with a clear core-sheath geometry before sheath removal, and chitosan nanofibers of approximately 100 nm diameter after washing. The resultant fibers were characterized with IR spectroscopy and X-ray diffraction, and the mechanical and electrical properties were evaluated.


Nanotechnology | 2011

Edge electrospinning for high throughput production of quality nanofibers

N.M. Thoppey; Jason Bochinski; Laura Clarke; Russell E. Gorga

A novel, simple geometry for high throughput electrospinning from a bowl edge is presented that utilizes a vessel filled with a polymer solution and a concentric cylindrical collector. Successful fiber formation is presented for two different polymer systems with differing solution viscosity and solvent volatility. The process of jet initiation, resultant fiber morphology and fiber production rate are discussed for this unconfined feed approach. Under high voltage initiation, the jets spontaneously form directly on the fluid surface and rearrange along the circumference of the bowl to provide approximately equal spacing between spinning sites. Nanofibers currently produced from bowl electrospinning are identical in quality to those fabricated by traditional needle electrospinning (TNE) with a demonstrated ∼ 40 times increase in the production rate for a single batch of solution due primarily to the presence of many simultaneous jets. In the bowl electrospinning geometry, the electric field pattern and subsequent effective feed rate are very similar to those parameters found under optimized TNE experiments. Consequently, the electrospinning process per jet is directly analogous to that in TNE and thereby results in the same quality of nanofibers.


Journal of Food Science | 2010

Effect of Type and Content of Modified Montmorillonite on the Structure and Properties of Bio-Nanocomposite Films Based on Soy Protein Isolate and Montmorillonite

Prabhat Kumar; K.P. Sandeep; Sajid Alavi; Van-Den Truong; Russell E. Gorga

The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2009

Nanofibrous composites for tissue engineering applications

Seth D. McCullen; Sangeetha Ramaswamy; Laura Clarke; Russell E. Gorga

Development of artificial matrices for tissue engineering is a crucial area of research in the field of regenerative medicine. Successful tissue scaffolds, in analogy with the natural mammalian extracellular matrix (ECM), are multi-component, fibrous, and on the nanoscale. In addition, to this key morphology, artificial scaffolds must have mechanical, chemical, surface, and electrical properties that match the ECM or basement membrane of the specific tissue desired. In particular, these material properties may vary significantly for the four primary tissues in the body: nerve, muscle, epithelial, and connective. In order to address this complex array of attributes with a polymeric material, a nanocomposite approach, employing a blend of materials, addition of a particle to enhance particular properties, or a surface treatment, is likely to be required. In this review, we examine nanocomposite approaches to address these diverse needs as a function of tissue type. The review is intended as a bridge between material scientists and biomedical researchers to give basic background information on tissue biology to the former, and on material processing approaches to the latter, in a general manner, and specifically review fibrous nanocomposite materials that have previously been used for cell studies, either in vivo or in vitro.


Tissue Engineering Part C-methods | 2010

In Situ Collagen Polymerization of Layered Cell-Seeded Electrospun Scaffolds for Bone Tissue Engineering Applications

Seth D. McCullen; Philip R. Miller; Shaun D. Gittard; Russell E. Gorga; Behnam Pourdeyhimi; Roger J. Narayan; Elizabeth G. Loboa

Electrospun scaffolds have been studied extensively for their potential use in bone tissue engineering applications. However, inherent issues with the electrospinning approach limit the thickness of these scaffolds and constrain their use for repair of critical-sized bone defects. One method to increase overall scaffold thickness is to bond multiple electrospun scaffolds together with a biocompatible gel. The objective of this study was to determine whether multiple human adipose-derived stem cell (hASC-seeded electrospun, nanofibrous scaffolds could be layered via in situ collagen assembly and whether the addition of laser-ablated micron-sized pores within the electrospun scaffold layers was beneficial to the bonding process. Pores were created by a laser ablation technique. We hypothesized that the addition of micron-sized pores within the electrospun scaffolds would encourage collagen integration between scaffold layers, and promote osteogenic differentiation of hASCs seeded within the layered electrospun scaffolds. To evaluate the benefit of assembled scaffolds with and without engineered pores, hASCs were seeded on individual electrospun scaffolds, hASC-seeded scaffolds were bonded with type I collagen, and the assembled ∼3-mm-thick constructs were cultured for 3 weeks to examine their potential as bone tissue engineering scaffolds. Assembled electrospun scaffolds/collagen gel constructs using electrospun scaffolds with pores resulted in enhanced hASC viability, proliferation, and mineralization of the scaffolds after 3 weeks in vitro compared to constructs using electrospun scaffolds without pores. Scanning electron microscopy and histological examination revealed that the assembled constructs that included laser-ablated electrospun scaffolds were able to maintain a contracted structure and were not delaminated, unlike assembled constructs containing nonablated electrospun scaffolds. This is the first study to show that the introduction of engineered pores in electrospun scaffolds assists with multilayered scaffold integration, resulting in thick constructs potentially suitable for use as scaffolds for bone tissue engineering or repair of critical bone defects.


Polymer | 2003

Interdiffusion and phase behavior at homopolymer/random copolymer interfaces

Erin L. Jablonski; Russell E. Gorga; Balaji Narasimhan

Abstract Interdiffusion in polymer bilayers of polystyrene (PS) and the statistically random copolymer poly(styrene- r -4-bromostyrene) (PBS), (C 8 H (8− x ) Br x ) N , where x is the mole fraction of brominated repeat units in the copolymer and N the degree of polymerization, was studied using Rutherford backscattering spectroscopy (RBS). PS/PBS bilayers with 0.04 x N PS / N PBS varied from 0.06 N PS / N PBS N PS / N PBS ≠1, the mobility is dictated by the faster diffusing (lower N ) component, resulting in an interface which moves toward the faster diffusing component. This result is consistent with fast mode theory; equilibrium conditions correspond to the asymmetry of the phase diagrams. Mutual diffusion coefficients were determined by comparison of the RBS data to a mean-field interdiffusion model using the fast mode expression for mobility. The mutual diffusion coefficient is shown to decrease with increasing N and x and increase with temperature. The implications of this miscibility dependence of the interdiffusion behavior, based on both composition of the copolymer and degree of polymerization, are discussed in the context of strengthening homopolymer/random copolymer interfaces.


Nanotechnology | 2017

In situ curing of liquid epoxy via gold-nanoparticle mediated photothermal heating

Ju Dong; Gabriel Firestone; Jason Bochinski; Laura Clarke; Russell E. Gorga

Metal nanoparticles incorporated at low concentration into epoxy systems enable in situ curing via photothermal heating. In the process of nanoparticle-mediated photothermal heating, light interacts specifically with particles embedded within a liquid or solid material and this energy is transformed into heat, resulting in significant temperature increase local to each particle with minimal warming of surroundings. The ability to use such internal heating to transform the mechanical properties of a material (e.g., from liquid to rigid solid) without application of damaging heat to the surrounding environment represents a powerful tool for a variety of scientific applications, particularly within the biomedical sector. Uniform particle dispersion is achieved by placing the nanoparticles within solvent miscible with the desired epoxy resin, demonstrating a strategy utilizable for a wide range of materials without requiring chemical modification of the particles or epoxy. Mechanical and thermal properties (storage modulus, T g, and degradation behavior) of the cured epoxy are equivalent to those obtained under traditional heating methods. Selective curing of a shape is demonstrated within a liquid bath of epoxy, where the solid form is generated by rastering a spatially confined, photothermal-driving light beam. The non-irradiated regions are largely unaffected and the solid part is easily removed from the remaining liquid. Temperature profiles showing minimal heating outside the irradiated zone are presented and discussed.


Materials Research Express | 2014

Unconfined, melt edge electrospinning from multiple, spontaneous, self-organized polymer jets

Qingqing Wang; Colin K Curtis; N.M. Thoppey; Jason Bochinski; Russell E. Gorga; Laura Clarke

Commercial grade polyethylene is melt electrospun from a thin film of unconfined molten polymer on a heated, electrically-grounded plate. Under the influence of an applied electric field, the melt spontaneously forms fingering perturbations at the plate edge which then evolve into emitting fiber-forming jets. Jet-to-jet spacing (∼5mm), which is dependent on the applied voltage amplitude, is in agreement with estimates from a simple theoretical treatment. The broad applicability of the approach is verified by spinning a second polymer —polycaprolactone. In both cases, the fabricated fibers are similar in quality to those obtained under needle melt electrospinning; however for this method, there are no nozzles to clog and an enhanced production rate up to 80mgmin �1 is achieved from approximately 20–25 simultaneous parallel jets. The process of jet formation, effective flow rates, cone-jet diameters, as well as limits on jet density and differences with polymer type are compared with theoretical models. This particular approach allows facile, high throughput micro- and nano-fiber formation from a wide variety of thermoplastics and other high viscosity fluids without the use of solvents or the persistent issues of clogging and pumping that hamper traditional methods, resulting in mechanically strong meso-scale fibers highly desirable for industrial applications.


Journal of Polymer Science Part B | 2004

Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes

Russell E. Gorga; Robert E. Cohen

Collaboration


Dive into the Russell E. Gorga's collaboration.

Top Co-Authors

Avatar

Laura Clarke

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jason Bochinski

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Derrick Stevens

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

N.M. Thoppey

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Seth D. McCullen

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satyajeet S. Ojha

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Gabriel Firestone

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Somsubhra Maity

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Wesley Roberts

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge