Russell E. Naisbit
University of Fribourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell E. Naisbit.
Insect Conservation and Diversity | 2011
Christine Haaland; Russell E. Naisbit; Louis-Félix Bersier
Abstract. 1. Sown wildflower strips are increasingly being established in European countries within agri‐environmental schemes to enhance biodiversity, especially in intensively used agricultural areas.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Russell E. Naisbit; Rudolf P. Rohr; Axel G. Rossberg; Patrik Kehrli; Louis-Félix Bersier
Food webs are the complex networks of trophic interactions that stoke the metabolic fires of life. To understand what structures these interactions in natural communities, ecologists have developed simple models to capture their main architectural features. However, apparently realistic food webs can be generated by models invoking either predator–prey body-size hierarchies or evolutionary constraints as structuring mechanisms. As a result, this approach has not conclusively revealed which factors are the most important. Here we cut to the heart of this debate by directly comparing the influence of phylogeny and body size on food web architecture. Using data from 13 food webs compiled by direct observation, we confirm the importance of both factors. Nevertheless, phylogeny dominates in most networks. Moreover, path analysis reveals that the size-independent direct effect of phylogeny on trophic structure typically outweighs the indirect effect that could be captured by considering body size alone. Furthermore, the phylogenetic signal is asymmetric: closely related species overlap in their set of consumers far more than in their set of resources. This is at odds with several food web models, which take only the view-point of consumers when assigning interactions. The echo of evolutionary history clearly resonates through current food webs, with implications for our theoretical models and conservation priorities.
Journal of Animal Ecology | 2013
Yvonne Fabian; Nadine Sandau; Odile T. Bruggisser; Alex Aebi; Patrik Kehrli; Rudolf P. Rohr; Russell E. Naisbit; Louis-Félix Bersier
1. Understanding the environmental factors that structure biodiversity and food webs among communities is central to assess and mitigate the impact of landscape changes. 2. Wildflower strips are ecological compensation areas established in farmland to increase pollination services and biological control of crop pests and to conserve insect diversity. They are arranged in networks in order to favour high species richness and abundance of the fauna. 3. We describe results from experimental wildflower strips in a fragmented agricultural landscape, comparing the importance of landscape, of spatial arrangement and of vegetation on the diversity and abundance of trap-nesting bees, wasps and their enemies, and the structure of their food webs. 4. The proportion of forest cover close to the wildflower strips and the landscape heterogeneity stood out as the most influential landscape elements, resulting in a more complex trap-nest community with higher abundance and richness of hosts, and with more links between species in the food webs and a higher diversity of interactions. We disentangled the underlying mechanisms for variation in these quantitative food web metrics. 5. We conclude that in order to increase the diversity and abundance of pollinators and biological control agents and to favour a potentially stable community of cavity-nesting hymenoptera in wildflower strips, more investment is needed in the conservation and establishment of forest habitats within agro-ecosystems, as a reservoir of beneficial insect populations.
Evolution | 2010
Matthias Borer; Tom van Noort; Martine Rahier; Russell E. Naisbit
Müllers theory of warning color and mimicry, despite forming a textbook example of frequency‐dependent selection, has rarely been demonstrated in the wild. This may be largely due to the practical and statistical difficulties of measuring natural selection on mobile prey species. Here we demonstrate that this selection acts in alpine beetle communities by using tethered beetles exposed to natural predators. Oreina gloriosa leaf beetles (Coleoptera: Chrysomelidae) possess chemical defense in the form of cardenolides, accompanied by what appears to be warning color in bright metallic blues and greens. Individuals that match the locally predominant color morph have increased survival, with odds of week‐long survival increased by a factor of 1.67 over those that do not match. This corresponds to selection of 13% against foreign morphs. Such selection, acting in concert with variation in community composition, could be responsible for geographic variation in warning color. However, in the face of this purifying selection, the within‐population polymorphism seen in many Oreina species remains paradoxical.
Ecology | 2011
Russell E. Naisbit; Patrik Kehrli; Rudolf P. Rohr; Louis-Félix Bersier
Body mass is a fundamental characteristic that affects metabolism, life history, and population abundance and frequently sets bounds on who eats whom in food webs. Based on a collection of topological food webs, Ulrich Brose and colleagues presented a general relationship between the body mass of predators and their prey and analyzed how mean predator-prey body-mass ratios differed among habitats and predator metabolic categories. Here we show that the general body-mass relationship conceals significant variation associated with both predator and prey phylogeny. Major-axis regressions between the log body mass of predators and prey differed among taxonomic groups. The global pattern for Kingdom Animalia had slope > 1, but phyla and classes varied, and several had slopes significantly < 1. The predator-prey body-mass ratio can therefore decrease or increase with increasing body mass, depending on the taxon considered. We also found a significant phylogenetic signal in analyses of prey body-mass range for predators and predator body-mass range for prey, with stronger signal in the former. Besides providing insights into how characteristics of trophic interactions evolve, our results emphasize the need to integrate phylogeny to improve models of community structure and dynamics or to achieve a metabolic theory of food-web ecology.
Molecular Phylogenetics and Evolution | 2010
Matthias Borer; Nadir Alvarez; Sven Buerki; Nicolas Margraf; Martine Rahier; Russell E. Naisbit
The genetic landscape of the European flora and fauna was shaped by the ebb and flow of populations with the shifting ice during Quaternary climate cycles. While this has been well demonstrated for lowland species, less is known about high altitude taxa. Here we analyze the phylogeography of the leaf beetle Oreina elongata from 20 populations across the Alps and Apennines. Three mitochondrial and one nuclear region were sequenced in 64 individuals. Within an mtDNA phylogeny, three of seven subspecies are monophyletic. The species is chemically defended and aposematic, with green and blue forms showing geographic variation and unexpected within-population polymorphism. These warning colors show pronounced east-west geographical structure in distribution, but the phylogeography suggests repeated origin and loss. Basal clades come from the central Alps. Ancestors of other clades probably survived across northern Italy and the northern Adriatic, before separation of eastern, southern and western populations and rapid spread through the western Alps. After reviewing calibrated gene-specific substitution rates in the literature, we use partitioned Bayesian coalescent analysis to date our phylogeography. The major clades diverged long before the last glacial maximum, suggesting that O. elongata persisted many glacial cycles within or at the edges of the Alps and Apennines. When analyzing additional barcoding pairwise distances, we find strong evidence to consider O. elongata as a species complex rather than a single species.
Molecular Ecology | 2007
Nicolas Margraf; Aline Verdon; Martine Rahier; Russell E. Naisbit
The challenge in defining conservation units so that they represent evolutionary entities has been to combine both genetic properties and ecological significance. Here we make use of the complexity of the European Alps, with their genetic landscape shaped by geographical barriers and postglacial colonization, to examine the correlation between ecological and genetic divergence. Montane species, because of the fragmentation of their present habitat, constitute extreme cases in which to test if genetically distinct subgroups based on neutral markers are also ecologically differentiated and show local adaptation. In the leaf beetle Oreina elongata, populations show variation in host plant use and a patchy distribution throughout the Alps and Apennines. We demonstrate that despite very strong genetic isolation (FST = 0.381), variation in host plant use has led to differences in larval life‐history traits between populations only as a secondary effect of host defence chemistry, and not through physiological adaptation to plant nutritional value. We also establish that populations that are more ecologically different in terms of larval performance are also more genetically divergent. In addition, morphological variation used to define subspecies appears to be mirrored in the population genetics of this species, resulting in almost perfect clustering based on microsatellite data. Finally, we argue from their strong genetic structure and congruent distribution that the subspecies of O. elongata were divided among the same glacial refugia within the Alps that have been proposed for alpine plants.
Proceedings of the Royal Society of London B: Biological Sciences | 2008
Gregory Röder; Martine Rahier; Russell E. Naisbit
Adaptation to different hosts plays a central role in the evolution of specialization and speciation in phytophagous insects and parasites, and our ability to experimentally rank hosts by their quality is critical to research to understand these processes. Here we provide a counter-intuitive example in which growth is faster on poor quality hosts. The leaf beetles Oreina elongata and Oreina cacaliae share their host plant with the rust Uromyces cacaliae. Larvae reared on infected Adenostyles alliariae show reduced growth rate, reduced maximum weight and longer development time. However, they normally respond adaptively to the rusts mid-season arrival. When switched during development from healthy to infected leaves, larvae accelerate growth and reduce development time, but pupate at lower body weight. In this novel plant–insect–fungus interaction, infection forms the cue to trade off life-history traits in order to complete development within the brief alpine summer. It represents a novel mode of developmental plasticity, which is likely to be found in other host–parasite systems whenever host quality deteriorates due to multiple infection or ageing. This phenotypic plasticity would modify competition after co-infection and the mutual selection imposed by hosts and parasites, and creates a paradoxical negative correlation between growth rate and environmental quality.
Journal of Evolutionary Biology | 2013
R. M. Merrill; Russell E. Naisbit; James Mallet; Chris D. Jiggins
Shifts in host‐plant use by phytophagous insects have played a central role in their diversification. Evolving host‐use strategies will reflect a trade‐off between selection pressures. The ecological niche of herbivorous insects is partitioned along several dimensions, and if populations remain in contact, recombination will break down associations between relevant loci. As such, genetic architecture can profoundly affect the coordinated divergence of traits and subsequently the ability to exploit novel habitats. The closely related species Heliconius cydno and H. melpomene differ in mimetic colour pattern, habitat and host‐plant use. We investigate the selection pressures and genetic basis underlying host‐use differences in these two species. Host‐plant surveys reveal that H. melpomene specializes on a single species of Passiflora. This is also true for the majority of other Heliconius species in secondary growth forest at our study site, as expected under a model of interspecific competition. In contrast, H. cydno, which uses closed‐forest habitats where both Heliconius and Passiflora are less common, appears not to be restricted by competition and uses a broad selection of the available Passiflora. However, other selection pressures are likely involved, and field experiments reveal that early larval survival of both butterfly species is highest on Passiflora menispermifolia, but most markedly so for H. melpomene, the specialist on that host. Finally, we demonstrate an association between host‐plant acceptance and colour pattern amongst interspecific hybrids, suggesting that major loci underlying these important ecological traits are physically linked in the genome. Together, our results reveal ecological and genetic associations between shifts in habitat, host use and mimetic colour pattern that have likely facilitated both speciation and coexistence.
Ecology and Evolution | 2012
Yvonne Fabian; Nadine Sandau; Odile T. Bruggisser; Patrik Kehrli; Alexandre Aebi; Rudolf P. Rohr; Russell E. Naisbit; Louis Félix Bersier
Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a “low plant diversity – high mollusk abundance” trajectory.