Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell Graceffa is active.

Publication


Featured researches published by Russell Graceffa.


Journal of Medicinal Chemistry | 2008

Naphthamides as novel and potent vascular endothelial growth factor receptor tyrosine kinase inhibitors: design, synthesis, and evaluation.

Jean-Christophe Harmange; Matthew Weiss; Julie Germain; Anthony Polverino; George Borg; James Bready; Danlin Chen; Deborah Choquette; Angela Coxon; Tom DeMelfi; Lucian DiPietro; Nicholas Doerr; Juan Estrada; Julie Flynn; Russell Graceffa; Shawn P. Harriman; Stephen Kaufman; Daniel S. La; Alexander M. Long; Matthew W. Martin; Sesha Neervannan; Vinod F. Patel; Michele Potashman; Kelly Regal; Phillip M. Roveto; Michael Schrag; Charlie Starnes; Andrew Tasker; Yohannes Teffera; Ling Wang

A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles. In particular, compound 48 demonstrated significant antitumor efficacy against established HT29 human colon adenocarcinoma xenografts implanted in athymic mice. A full account of the preparation, structure-activity relationships, pharmacokinetic properties, and pharmacology of analogues within this series is presented.


Journal of Medicinal Chemistry | 2008

Evaluation of a Series of Naphthamides as Potent, Orally Active Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase Inhibitors¶

Matthew Weiss; Jean-Christophe Harmange; Anthony Polverino; David Bauer; Loren Berry; Virginia Berry; George Borg; James Bready; Danlin Chen; Deborah Choquette; Angela Coxon; Tom DeMelfi; Nicholas Doerr; Juan Estrada; Julie Flynn; Russell Graceffa; Shawn P. Harriman; Stephen Kaufman; Daniel S. La; Alexander M. Long; Sesha Neervannan; Vinod F. Patel; Michele Potashman; Kelly Regal; Phillip M. Roveto; Michael Schrag; Charlie Starnes; Andrew Tasker; Yohannes Teffera; Douglas A. Whittington

We have previously shown N-arylnaphthamides can be potent inhibitors of vascular endothelial growth factor receptors (VEGFRs). N-Alkyl and N-unsubstituted naphthamides were prepared and found to yield nanomolar inhibitors of VEGFR-2 (KDR) with an improved selectivity profile against a panel of tyrosine and serine/threonine kinases. The inhibitory activity of this series was retained at the cellular level. Naphthamides 3, 20, and 22 exhibited good pharmacokinetics following oral dosing and showed potent inhibition of VEGF-induced angiogenesis in the rat corneal model. Once-daily oral administration of 22 for 14 days led to 85% inhibition of established HT29 colon cancer and Calu-6 lung cancer xenografts at doses of 10 and 20 mg/kg, respectively.


Journal of Medicinal Chemistry | 2008

Novel 2,3-dihydro-1,4-benzoxazines as potent and orally bioavailable inhibitors of tumor-driven angiogenesis.

Daniel S. La; Julie Belzile; James Bready; Angela Coxon; Thomas DeMelfi; Nicholas Doerr; Juan Estrada; Julie Flynn; Shaun Flynn; Russell Graceffa; Shawn P. Harriman; Jay Larrow; Alexander M. Long; Matthew W. Martin; Michael J. Morrison; Vinod F. Patel; Philip Roveto; Ling Wang; Matthew Weiss; Douglas A. Whittington; Yohannes Teffera; Zhiyang Zhao; Anthony Polverino; Jean-Christophe Harmange

Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF. Herein, we report the discovery of 2,3-dihydro-1,4-benzoxazines as inhibitors of intrinsic KDR activity (IC 50 < 0.1 microM) and human umbilical vein endothelial cell (HUVEC) proliferation with IC 50 < 0.1 microM. More specifically, compound 16 was identified as a potent (KDR: < 1 nM and HUVEC: 4 nM) and selective inhibitor that exhibited efficacy in angiogenic in vivo models. In addition, this series of molecules is typically well-absorbed orally, further demonstrating the 2,3-dihydro-1,4-benzoxazine moiety as a promising platform for generating kinase-based antiangiogenic therapeutic agents.


Journal of Medicinal Chemistry | 2012

Design and preparation of a potent series of hydroxyethylamine containing β-secretase inhibitors that demonstrate robust reduction of central β-amyloid.

Matthew Weiss; Toni Williamson; Safura Babu-Khan; Michael D. Bartberger; James Brown; Kui Chen; Yuan Cheng; Martin Citron; Michael Croghan; Thomas Dineen; Joel Esmay; Russell Graceffa; Scott Harried; Dean Hickman; Stephen A. Hitchcock; Daniel B. Horne; Hongbing Huang; Ronke Imbeah-Ampiah; Ted Judd; Matthew R. Kaller; Charles Kreiman; Daniel S. La; Vivian Li; Patricia Lopez; Steven W. Louie; Holger Monenschein; Thomas Nguyen; Lewis D. Pennington; Claire Rattan; Tisha San Miguel

A series of potent hydroxyethyl amine (HEA) derived inhibitors of β-site APP cleaving enzyme (BACE1) was optimized to address suboptimal pharmacokinetics and poor CNS partitioning. This work identified a series of benzodioxolane analogues that possessed improved metabolic stability and increased oral bioavailability. Subsequent efforts focused on improving CNS exposure by limiting susceptibility to Pgp-mediated efflux and identified an inhibitor which demonstrated robust and sustained reduction of CNS β-amyloid (Aβ) in Sprague-Dawley rats following oral administration.


Journal of Medicinal Chemistry | 2012

Structure- and Property-Based Design of Aminooxazoline Xanthenes as Selective, Orally Efficacious, and CNS Penetrable BACE Inhibitors for the Treatment of Alzheimer's Disease.

Hongbing Huang; Daniel S. La; Alan C. Cheng; Douglas A. Whittington; Vinod F. Patel; Kui Chen; Thomas Dineen; Oleg Epstein; Russell Graceffa; Dean Hickman; Y.-H. Kiang; Steven W. Louie; Yi Luo; Robert C. Wahl; Paul H. Wen; Stephen A. Wood; Robert T. Fremeau

A structure- and property-based drug design approach was employed to identify aminooxazoline xanthenes as potent and selective human β-secretase inhibitors. These compounds exhibited good isolated enzyme, cell potency, and selectivity against the structurally related aspartyl protease cathepsin D. Our efforts resulted in the identification of a potent, orally bioavailable CNS penetrant compound that exhibited in vivo efficacy. A single oral dose of compound 11a resulted in a significant reduction of CNS Aβ40 in naive rats.


Journal of Medicinal Chemistry | 2012

Design and synthesis of potent, orally efficacious hydroxyethylamine derived β-site amyloid precursor protein cleaving enzyme (BACE1) inhibitors.

Thomas Dineen; Matthew Weiss; Toni Williamson; Paul D. Acton; Safura Babu-Khan; Michael D. Bartberger; James Brown; Kui Chen; Yuan Cheng; Martin Citron; Michael Croghan; Robert Dunn; Joel Esmay; Russell Graceffa; Scott Harried; Dean Hickman; Stephen A. Hitchcock; Daniel B. Horne; Hongbing Huang; Ronke Imbeah-Ampiah; Ted Judd; Matthew R. Kaller; Charles Kreiman; Daniel S. La; Vivian Li; Patricia Lopez; Steven W. Louie; Holger Monenschein; Thomas Nguyen; Lewis D. Pennington

We have previously shown that hydroxyethylamines can be potent inhibitors of the BACE1 enzyme and that the generation of BACE1 inhibitors with CYP 3A4 inhibitory activities in this scaffold affords compounds (e.g., 1) with sufficient bioavailability and pharmacokinetic profiles to reduce central amyloid-β peptide (Aβ) levels in wild-type rats following oral dosing. In this article, we describe further modifications of the P1-phenyl ring of the hydroxyethylamine series to afford potent, dual BACE1/CYP 3A4 inhibitors which demonstrate improved penetration into the CNS. Several of these compounds caused robust reduction of Aβ levels in rat CSF and brain following oral dosing, and compound 37 exhibited an improved cardiovascular safety profile relative to 1.


ACS Medicinal Chemistry Letters | 2012

A Potent and Orally Efficacious, Hydroxyethylamine-Based Inhibitor of β-Secretase.

Matthew R. Kaller; Scott Harried; Brian K. Albrecht; Patricia Amarante; Safura Babu-Khan; Michael D. Bartberger; James Brown; Ryan Brown; Kui Chen; Yuan Cheng; Martin Citron; Michael Croghan; Russell Graceffa; Dean Hickman; Ted Judd; Chuck Kriemen; Daniel La; Vivian Li; Patricia Lopez; Yi Luo; Craig E. Masse; Holger Monenschein; Thomas Nguyen; Lewis D. Pennington; Tisha San Miguel; E. Allen Sickmier; Robert C. Wahl; Matthew Weiss; Paul H. Wen; Toni Williamson

β-Secretase inhibitors are potentially disease-modifying treatments for Alzheimers disease. Previous efforts in our laboratory have resulted in hydroxyethylamine-derived inhibitors such as 1 with low nanomolar potency against β-site amyloid precursor protein cleaving enzyme (BACE). When dosed intravenously, compound 1 was also shown to significantly reduce Aβ40 levels in plasma, brain, and cerebral spinal fluid. Herein, we report further optimizations that led to the discovery of inhibitor 16 as a novel, potent, and orally efficacious BACE inhibitor.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of triazine-benzimidazoles as selective inhibitors of mTOR.

Emily A. Peterson; Paul S. Andrews; Xuhai Be; Alessandro Boezio; Tammy L. Bush; Alan C. Cheng; James R. Coats; Adria E. Colletti; Katrina W. Copeland; Michelle DuPont; Russell Graceffa; Barbara Grubinska; Jean-Christophe Harmange; Joseph L. Kim; Erin L. Mullady; Philip R. Olivieri; Laurie B. Schenkel; Mary K. Stanton; Yohannes Teffera; Douglas A. Whittington; Ti Cai; Daniel S. La

mTOR is part of the PI3K/AKT pathway and is a central regulator of cell growth and survival. Since many cancers display mutations linked to the mTOR signaling pathway, mTOR has emerged as an important target for oncology therapy. Herein, we report the discovery of triazine benzimidazole inhibitors that inhibit mTOR kinase activity with up to 200-fold selectivity over the structurally homologous kinase PI3Kα. When tested in a panel of cancer cell lines displaying various mutations, a selective inhibitor from this series inhibited cellular proliferation with a mean IC(50) of 0.41 μM. Lead compound 42 demonstrated up to 83% inhibition of mTOR substrate phosphorylation in a murine pharmacodynamic model.


Bioorganic & Medicinal Chemistry Letters | 2012

Discovery and optimization of potent and selective imidazopyridine and imidazopyridazine mTOR inhibitors

Emily A. Peterson; Alessandro Boezio; Paul S. Andrews; Christiane Boezio; Tammy L. Bush; Alan C. Cheng; Deborah Choquette; James R. Coats; Adria E. Colletti; Katrina W. Copeland; Michelle DuPont; Russell Graceffa; Barbara Grubinska; Joseph L. Kim; Richard T. Lewis; Jingzhou Liu; Erin L. Mullady; Michele Potashman; Karina Romero; Paul L. Shaffer; Mary K. Stanton; John Stellwagen; Yohannes Teffera; Shuyan Yi; Ti Cai; Daniel S. La

mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series.


Journal of Medicinal Chemistry | 2017

Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency and Pharmacokinetics While Mitigating Metabolic Liabilities

Matthew Weiss; Thomas Dineen; Isaac E. Marx; Steven Altmann; Alessandro Boezio; Howard Bregman; Margaret Y. Chu-Moyer; Erin F. DiMauro; Elma Feric Bojic; Robert S. Foti; Hua Gao; Russell Graceffa; Hakan Gunaydin; Angel Guzman-Perez; Hongbing Huang; Liyue Huang; Michael Jarosh; Thomas Kornecook; Charles Kreiman; Joseph Ligutti; Daniel S. La; Min-Hwa Jasmine Lin; Dong Liu; Bryan D. Moyer; Hanh Nho Nguyen; Emily A. Peterson; Paul Rose; Kristin Taborn; Beth D. Youngblood; Violeta Yu

Several reports have recently emerged regarding the identification of heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. The optimization of a series of internal NaV1.7 leads that address a number of metabolic liabilities including bioactivation, PXR activation, as well as CYP3A4 induction and inhibition led to the identification of potent and selective inhibitors that demonstrated favorable pharmacokinetic profiles and were devoid of the aforementioned liabilities. The key to achieving this within a series prone to transporter-mediated clearance was the identification of a small range of optimal cLogD values and the discovery of subtle PXR SAR that was not lipophilicity dependent. This enabled the identification of compound 20, which was advanced into a target engagement pharmacodynamic model where it exhibited robust reversal of histamine-induced scratching bouts in mice.

Researchain Logo
Decentralizing Knowledge