Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell J. de Souza is active.

Publication


Featured researches published by Russell J. de Souza.


Journal of Clinical Gastroenterology | 2006

Colonic Health: Fermentation and Short Chain Fatty Acids

Julia M. W. Wong; Russell J. de Souza; Cyril W.C. Kendall; Azadeh Emam; David J.A. Jenkins

Interest has been recently rekindled in short chain fatty acids (SCFAs) with the emergence of prebiotics and probiotics aimed at improving colonic and systemic health. Dietary carbohydrates, specifically resistant starches and dietary fiber, are substrates for fermentation that produce SCFAs, primarily acetate, propionate, and butyrate, as end products. The rate and amount of SCFA production depends on the species and amounts of microflora present in the colon, the substrate source and gut transit time. SCFAs are readily absorbed. Butyrate is the major energy source for colonocytes. Propionate is largely taken up by the liver. Acetate enters the peripheral circulation to be metabolized by peripheral tissues. Specific SCFA may reduce the risk of developing gastrointestinal disorders, cancer, and cardiovascular disease. Acetate is the principal SCFA in the colon, and after absorption it has been shown to increase cholesterol synthesis. However, propionate, a gluconeogenerator, has been shown to inhibit cholesterol synthesis. Therefore, substrates that can decrease the acetate: propionate ratio may reduce serum lipids and possibly cardiovascular disease risk. Butyrate has been studied for its role in nourishing the colonic mucosa and in the prevention of cancer of the colon, by promoting cell differentiation, cell-cycle arrest and apoptosis of transformed colonocytes; inhibiting the enzyme histone deacetylase and decreasing the transformation of primary to secondary bile acids as a result of colonic acidification. Therefore, a greater increase in SCFA production and potentially a greater delivery of SCFA, specifically butyrate, to the distal colon may result in a protective effect. Butyrate irrigation (enema) has also been suggested in the treatment of colitis. More human studies are now needed, especially, given the diverse nature of carbohydrate substrates and the SCFA patterns resulting from their fermentation. Short-term and long-term human studies are particularly required on SCFAs in relation to markers of cancer risk. These studies will be key to the success of dietary recommendations to maximize colonic disease prevention.


Canadian Medical Association Journal | 2009

Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data

Donald E. Griesdale; Russell J. de Souza; Rob M. van Dam; Daren K. Heyland; Deborah J. Cook; Atul Malhotra; Rupinder Dhaliwal; William R. Henderson; Dean R. Chittock; Simon Finfer; Daniel Talmor

Background: Hyperglycemia is associated with increased mortality in critically ill patients. Randomized trials of intensive insulin therapy have reported inconsistent effects on mortality and increased rates of severe hypoglycemia. We conducted a meta-analysis to update the totality of evidence regarding the influence of intensive insulin therapy compared with conventional insulin therapy on mortality and severe hypoglycemia in the intensive care unit (ICU). Methods: We conducted searches of electronic databases, abstracts from scientific conferences and bibliographies of relevant articles. We included published randomized controlled trials conducted in the ICU that directly compared intensive insulin therapy with conventional glucose management and that documented mortality. We included in our meta-analysis the data from the recent NICE-SUGAR (Normoglycemia in Intensive Care Evaluation — Survival Using Glucose Algorithm Regulation) study. Results: We included 26 trials involving a total of 13 567 patients in our meta-analysis. Among the 26 trials that reported mortality, the pooled relative risk (RR) of death with intensive insulin therapy compared with conventional therapy was 0.93 (95% confidence interval [CI] 0.83–1.04). Among the 14 trials that reported hypoglycemia, the pooled RR with intensive insulin therapy was 6.0 (95% CI 4.5–8.0). The ICU setting was a contributing factor, with patients in surgical ICUs appearing to benefit from intensive insulin therapy (RR 0.63, 95% CI 0.44–0.91); patients in the other ICU settings did not (medical ICU: RR 1.0, 95% CI 0.78–1.28; mixed ICU: RR 0.99, 95% CI 0.86–1.12). The different targets of intensive insulin therapy (glucose level ≤ 6.1 mmol/L v. ≤ 8.3 mmol/L) did not influence either mortality or risk of hypoglycemia. Interpretation: Intensive insulin therapy significantly increased the risk of hypoglycemia and conferred no overall mortality benefit among critically ill patients. However, this therapy may be beneficial to patients admitted to a surgical ICU.


BMJ | 2015

Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies

Russell J. de Souza; Andrew Mente; Adriana Maroleanu; Adrian I. Cozma; Vanessa Ha; Teruko Kishibe; Elizabeth Uleryk; Patrick Budylowski; Holger J. Schünemann; Joseph Beyene; Sonia S. Anand

Objective To systematically review associations between intake of saturated fat and trans unsaturated fat and all cause mortality, cardiovascular disease (CVD) and associated mortality, coronary heart disease (CHD) and associated mortality, ischemic stroke, and type 2 diabetes. Design Systematic review and meta-analysis. Data sources Medline, Embase, Cochrane Central Registry of Controlled Trials, Evidence-Based Medicine Reviews, and CINAHL from inception to 1 May 2015, supplemented by bibliographies of retrieved articles and previous reviews. Eligibility criteria for selecting studies Observational studies reporting associations of saturated fat and/or trans unsaturated fat (total, industrially manufactured, or from ruminant animals) with all cause mortality, CHD/CVD mortality, total CHD, ischemic stroke, or type 2 diabetes. Data extraction and synthesis Two reviewers independently extracted data and assessed study risks of bias. Multivariable relative risks were pooled. Heterogeneity was assessed and quantified. Potential publication bias was assessed and subgroup analyses were undertaken. The GRADE approach was used to evaluate quality of evidence and certainty of conclusions. Results For saturated fat, three to 12 prospective cohort studies for each association were pooled (five to 17 comparisons with 90 501-339 090 participants). Saturated fat intake was not associated with all cause mortality (relative risk 0.99, 95% confidence interval 0.91 to 1.09), CVD mortality (0.97, 0.84 to 1.12), total CHD (1.06, 0.95 to 1.17), ischemic stroke (1.02, 0.90 to 1.15), or type 2 diabetes (0.95, 0.88 to 1.03). There was no convincing lack of association between saturated fat and CHD mortality (1.15, 0.97 to 1.36; P=0.10). For trans fats, one to six prospective cohort studies for each association were pooled (two to seven comparisons with 12 942-230 135 participants). Total trans fat intake was associated with all cause mortality (1.34, 1.16 to 1.56), CHD mortality (1.28, 1.09 to 1.50), and total CHD (1.21, 1.10 to 1.33) but not ischemic stroke (1.07, 0.88 to 1.28) or type 2 diabetes (1.10, 0.95 to 1.27). Industrial, but not ruminant, trans fats were associated with CHD mortality (1.18 (1.04 to 1.33) v 1.01 (0.71 to 1.43)) and CHD (1.42 (1.05 to 1.92) v 0.93 (0.73 to 1.18)). Ruminant trans-palmitoleic acid was inversely associated with type 2 diabetes (0.58, 0.46 to 0.74). The certainty of associations between saturated fat and all outcomes was “very low.” The certainty of associations of trans fat with CHD outcomes was “moderate” and “very low” to “low” for other associations. Conclusions Saturated fats are not associated with all cause mortality, CVD, CHD, ischemic stroke, or type 2 diabetes, but the evidence is heterogeneous with methodological limitations. Trans fats are associated with all cause mortality, total CHD, and CHD mortality, probably because of higher levels of intake of industrial trans fats than ruminant trans fats. Dietary guidelines must carefully consider the health effects of recommendations for alternative macronutrients to replace trans fats and saturated fats.


Journal of Nutrition | 2012

The Effects of Fructose Intake on Serum Uric Acid Vary among Controlled Dietary Trials

D. David Wang; John L. Sievenpiper; Russell J. de Souza; Laura Chiavaroli; Vanessa Ha; Adrian I. Cozma; Arash Mirrahimi; Matthew E. Yu; Amanda J. Carleton; Marco Di Buono; Alexandra L. Jenkins; Lawrence A. Leiter; Thomas M.S. Wolever; Joseph Beyene; Cyril W.C. Kendall; David J.A. Jenkins

Hyperuricemia is linked to gout and features of metabolic syndrome. There is concern that dietary fructose may increase uric acid concentrations. To assess the effects of fructose on serum uric acid concentrations in people with and without diabetes, we conducted a systematic review and meta-analysis of controlled feeding trials. We searched MEDLINE, EMBASE, and the Cochrane Library for relevant trials (through August 19, 2011). Analyses included all controlled feeding trials ≥7 d investigating the effect of fructose feeding on uric acid under isocaloric conditions, where fructose was isocalorically exchanged with other carbohydrate, or hypercaloric conditions, and where a control diet was supplemented with excess energy from fructose. Data were aggregated by the generic inverse variance method using random effects models and expressed as mean difference (MD) with 95% CI. Heterogeneity was assessed by the Q statistic and quantified by I2. A total of 21 trials in 425 participants met the eligibility criteria. Isocaloric exchange of fructose for other carbohydrate did not affect serum uric acid in diabetic and nondiabetic participants [MD = 0.56 μmol/L (95% CI: −6.62, 7.74)], with no evidence of inter-study heterogeneity. Hypercaloric supplementation of control diets with fructose (+35% excess energy) at extreme doses (213–219 g/d) significantly increased serum uric acid compared with the control diets alone in nondiabetic participants [MD = 31.0 mmol/L (95% CI: 15.4, 46.5)] with no evidence of heterogeneity. Confounding from excess energy cannot be ruled out in the hypercaloric trials. These analyses do not support a uric acid-increasing effect of isocaloric fructose intake in nondiabetic and diabetic participants. Hypercaloric fructose intake may, however, increase uric acid concentrations. The effect of the interaction of energy and fructose remains unclear. Larger, well-designed trials of fructose feeding at “real world” doses are needed.


Diabetes Care | 2012

Effect of Fructose on Glycemic Control in Diabetes: A systematic review and meta-analysis of controlled feeding trials

Adrian I. Cozma; John L. Sievenpiper; Russell J. de Souza; Laura Chiavaroli; Vanessa Ha; D. David Wang; Arash Mirrahimi; Matt E. Yu; Amanda J. Carleton; Marco Di Buono; Alexandra L. Jenkins; Lawrence A. Leiter; Thomas M.S. Wolever; Joseph Beyene; Cyril W.C. Kendall; David J.A. Jenkins

OBJECTIVE The effect of fructose on cardiometabolic risk in humans is controversial. We conducted a systematic review and meta-analysis of controlled feeding trials to clarify the effect of fructose on glycemic control in individuals with diabetes. RESEARCH DESIGN AND METHODS We searched MEDLINE, EMBASE, and the Cochrane Library (through 22 March 2012) for relevant trials lasting ≥7 days. Data were aggregated by the generic inverse variance method (random-effects models) and expressed as mean difference (MD) for fasting glucose and insulin and standardized MD (SMD) with 95% CI for glycated hemoglobin (HbA1c) and glycated albumin. Heterogeneity was assessed by the Cochran Q statistic and quantified by the I2 statistic. Trial quality was assessed by the Heyland methodological quality score (MQS). RESULTS Eighteen trials (n = 209) met the eligibility criteria. Isocaloric exchange of fructose for carbohydrate reduced glycated blood proteins (SMD −0.25 [95% CI −0.46 to −0.04]; P = 0.02) with significant intertrial heterogeneity (I2 = 63%; P = 0.001). This reduction is equivalent to a ∼0.53% reduction in HbA1c. Fructose consumption did not significantly affect fasting glucose or insulin. A priori subgroup analyses showed no evidence of effect modification on any end point. CONCLUSIONS Isocaloric exchange of fructose for other carbohydrate improves long-term glycemic control, as assessed by glycated blood proteins, without affecting insulin in people with diabetes. Generalizability may be limited because most of the trials were <12 weeks and had relatively low MQS (<8). To confirm these findings, larger and longer fructose feeding trials assessing both possible glycemic benefit and adverse metabolic effects are required.


Hypertension | 2012

Effect of Fructose on Blood Pressure A Systematic Review and Meta-Analysis of Controlled Feeding Trials

Vanessa Ha; John L. Sievenpiper; Russell J. de Souza; Laura Chiavaroli; D. David Wang; Adrian I. Cozma; Arash Mirrahimi; Matthew E. Yu; Amanda J. Carleton; Marco Dibuono; Alexandra L. Jenkins; Lawrence A. Leiter; Thomas M.S. Wolever; Joseph Beyene; Cyril W.C. Kendall; David J.A. Jenkins

Concerns have been raised about the adverse effect of fructose on blood pressure. International dietary guidelines, however, have not addressed fructose intake directly. A systematic review and meta-analysis was conducted to assess the effect of fructose in isocaloric exchange for other carbohydrates on systolic, diastolic, and mean arterial blood pressures. Studies were identified using Medline, Embase, and Cochrane databases (through January 9, 2012). Human clinical trials of isocaloric oral fructose exchange for other carbohydrate sources for ≥7 days were included in the analysis. Data were pooled by the generic inverse variance method using random-effects models and expressed as mean differences with 95% CI. Heterogeneity was assessed by the Q-statistic and quantified by I2. Study quality was assessed using the Heyland Methodological Quality Score. Thirteen isocaloric (n=352) and 2 hypercaloric (n=24) trials met the eligibility criteria. Overall, fructose intake in isocaloric exchange for other carbohydrates significantly decreased diastolic (mean difference: −1.54 [95% CI: −2.77 to −0.32]) and mean arterial pressure (mean difference: −1.16 [95% CI: −2.15 to −0.18]). There was no significant effect of fructose on systolic blood pressure (mean difference: −1.10 [95% CI: −2.46 to 0.44]). The hypercaloric fructose feeding trials found no significant overall mean arterial blood pressure effect of fructose in comparison with other carbohydrates. To confirm these results, longer and larger trials are needed. Contrary to previous concerns, we found that isocaloric substitution of fructose for other carbohydrates did not adversely affect blood pressure in humans.


Diabetes Care | 2009

Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans

John L. Sievenpiper; Amanda J. Carleton; Sheena Chatha; Henry Y. Jiang; Russell J. de Souza; Joseph Beyene; Cyril W.C. Kendall; David J.A. Jenkins

OBJECTIVE Because of blood lipid concerns, diabetes associations discourage fructose at high intakes. To quantify the effect of fructose on blood lipids in diabetes, we conducted a systematic review and meta-analysis of experimental clinical trials investigating the effect of isocaloric fructose exchange for carbohydrate on triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol in type 1 and 2 diabetes. RESEARCH DESIGN AND METHODS We searched MEDLINE, EMBASE, CINAHL, and the Cochrane Library for relevant trials of ≥7 days. Data were pooled by the generic inverse variance method and expressed as standardized mean differences with 95% CI. Heterogeneity was assessed by χ2 tests and quantified by I2. Meta-regression models identified dose threshold and independent predictors of effects. RESULTS Sixteen trials (236 subjects) met the eligibility criteria. Isocaloric fructose exchange for carbohydrate raised triglycerides and lowered total cholesterol under specific conditions without affecting LDL cholesterol or HDL cholesterol. A triglyceride-raising effect without heterogeneity was seen only in type 2 diabetes when the reference carbohydrate was starch (mean difference 0.24 [95% CI 0.05–0.44]), dose was >60 g/day (0.18 [0.00–0.37]), or follow-up was ≤4 weeks (0.18 [0.00–0.35]). Piecewise meta-regression confirmed a dose threshold of 60 g/day (R2 = 0.13)/10% energy (R2 = 0.36). A total cholesterol–lowering effect without heterogeneity was seen only in type 2 diabetes under the following conditions: no randomization and poor study quality (−0.19 [−0.34 to −0.05]), dietary fat >30% energy (−0.33 [−0.52 to −0.15]), or crystalline fructose (−0.28 [−0.47 to −0.09]). Multivariate meta-regression analyses were largely in agreement. CONCLUSIONS Pooled analyses demonstrated conditional triglyceride-raising and total cholesterol–lowering effects of isocaloric fructose exchange for carbohydrate in type 2 diabetes. Recommendations and large-scale future trials need to address the heterogeneity in the data.


JAMA | 2011

Effect of a Dietary Portfolio of Cholesterol-Lowering Foods Given at 2 Levels of Intensity of Dietary Advice on Serum Lipids in Hyperlipidemia: A Randomized Controlled Trial

David J.A. Jenkins; Peter J. H. Jones; Benoît Lamarche; Cyril W.C. Kendall; Dorothea Faulkner; Luba Cermakova; Iris Gigleux; Vanu Ramprasath; Russell J. de Souza; Chris M. Ireland; Darshna Patel; Korbua Srichaikul; Shahad Abdulnour; Balachandran Bashyam; Cheryl Collier; Sandy Hoshizaki; Robert G. Josse; Lawrence A. Leiter; Philip W. Connelly; Jiri Frohlich

CONTEXT Combining foods with recognized cholesterol-lowering properties (dietary portfolio) has proven highly effective in lowering serum cholesterol under metabolically controlled conditions. OBJECTIVE To assess the effect of a dietary portfolio administered at 2 levels of intensity on percentage change in low-density lipoprotein cholesterol (LDL-C) among participants following self-selected diets. DESIGN, SETTING, AND PARTICIPANTS A parallel-design study of 351 participants with hyperlipidemia from 4 participating academic centers across Canada (Quebec City, Toronto, Winnipeg, and Vancouver) randomized between June 25, 2007, and February 19, 2009, to 1 of 3 treatments lasting 6 months. INTERVENTION Participants received dietary advice for 6 months on either a low-saturated fat therapeutic diet (control) or a dietary portfolio, for which counseling was delivered at different frequencies, that emphasized dietary incorporation of plant sterols, soy protein, viscous fibers, and nuts. Routine dietary portfolio involved 2 clinic visits over 6 months and intensive dietary portfolio involved 7 clinic visits over 6 months. MAIN OUTCOME MEASURES Percentage change in serum LDL-C. RESULTS In the modified intention-to-treat analysis of 345 participants, the overall attrition rate was not significantly different between treatments (18% for intensive dietary portfolio, 23% for routine dietary portfolio, and 26% for control; Fisher exact test, P = .33). The LDL-C reductions from an overall mean of 171 mg/dL (95% confidence interval [CI], 168-174 mg/dL) were -13.8% (95% CI, -17.2% to -10.3%; P < .001) or -26 mg/dL (95% CI, -31 to -21 mg/dL; P < .001) for the intensive dietary portfolio; -13.1% (95% CI, -16.7% to -9.5%; P < .001) or -24 mg/dL (95% CI, -30 to -19 mg/dL; P < .001) for the routine dietary portfolio; and -3.0% (95% CI, -6.1% to 0.1%; P = .06) or -8 mg/dL (95% CI, -13 to -3 mg/dL; P = .002) for the control diet. Percentage LDL-C reductions for each dietary portfolio were significantly more than the control diet (P < .001, respectively). The 2 dietary portfolio interventions did not differ significantly (P = .66). Among participants randomized to one of the dietary portfolio interventions, percentage reduction in LDL-C on the dietary portfolio was associated with dietary adherence (r = -0.34, n = 157, P < .001). CONCLUSION Use of a dietary portfolio compared with the low-saturated fat dietary advice resulted in greater LDL-C lowering during 6 months of follow-up. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00438425.


The American Journal of Clinical Nutrition | 2012

Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial

Russell J. de Souza; George A. Bray; Vincent J. Carey; Kevin D. Hall; Meryl S. LeBoff; Catherine M. Loria; Nancy Laranjo; Frank M. Sacks; Steven R. Smith

BACKGROUND Weight loss reduces body fat and lean mass, but whether these changes are influenced by macronutrient composition of the diet is unclear. OBJECTIVE We determined whether energy-reduced diets that emphasize fat, protein, or carbohydrate differentially reduce total, visceral, or hepatic fat or preserve lean mass. DESIGN In a subset of participants in a randomized trial of 4 weight-loss diets, body fat and lean mass (n = 424; by using dual-energy X-ray absorptiometry) and abdominal and hepatic fat (n = 165; by using computed tomography) were measured after 6 mo and 2 y. Changes from baseline were compared between assigned amounts of protein (25% compared with 15%) and fat (40% compared with 20%) and across 4 carbohydrate amounts (35% through 65%). RESULTS At 6 mo, participants lost a mean (±SEM) of 4.2 ± 0.3 kg (12.4%) fat and 2.1 ± 0.3 kg (3.5%) lean mass (both P < 0.0001 compared with baseline values), with no differences between 25% and 15% protein (P ≥ 0.10), 40% and 20% fat (P ≥ 0.34), or 65% and 35% carbohydrate (P ≥ 0.27). Participants lost 2.3 ± 0.2 kg (13.8%) abdominal fat: 1.5 ± 0.2 kg (13.6%) subcutaneous fat and 0.9 ± 0.1 kg (16.1%) visceral fat (all P < 0.0001 compared with baseline values), with no differences between the diets (P ≥ 0.29). Women lost more visceral fat than did men relative to total-body fat loss. Participants regained ~40% of these losses by 2 y, with no differences between diets (P ≥ 0.23). Weight loss reduced hepatic fat, but there were no differences between groups (P ≥ 0.28). Dietary goals were not fully met; self-reported contrasts were closer to 2% protein, 8% fat, and 14% carbohydrate at 6 mo and 1%, 7%, and 10%, respectively, at 2 y. CONCLUSION Participants lost more fat than lean mass after consumption of all diets, with no differences in changes in body composition, abdominal fat, or hepatic fat between assigned macronutrient amounts. This trial was registered at clinicaltrials.gov as NCT00072995.


Atherosclerosis | 2014

Effect of fructose on postprandial triglycerides: A systematic review and meta-analysis of controlled feeding trials

D. David Wang; John L. Sievenpiper; Russell J. de Souza; Adrian I. Cozma; Laura Chiavaroli; Vanessa Ha; Arash Mirrahimi; Amanda J. Carleton; Marco Di Buono; Alexandra L. Jenkins; Lawrence A. Leiter; Thomas M. S. Wolever; Joseph Beyene; Cyril W.C. Kendall; David J.A. Jenkins

BACKGROUND In the absence of consistent clinical evidence, concerns have been raised that fructose raises postprandial triglycerides. PURPOSE A systematic review and meta-analysis was conducted to assess the effect of fructose on postprandial triglycerides. DATA SOURCES Relevant studies were identified from MEDLINE, EMBASE, and Cochrane databases (through September 3, 2013). DATA SELECTION Relevant clinical trials of ≥ 7-days were included in the analysis. DATA EXTRACTION Two independent reviewers extracted relevant data with disagreements reconciled by consensus. The Heyland Methodological Quality Score (MQS) assessed study quality. Data were pooled by the generic inverse variance method using random effects models and expressed as standardized mean differences (SMD) with 95% confidence intervals (CI). Heterogeneity was assessed (Cochran Q statistic) and quantified (I(2) statistic). DATA SYNTHESIS Eligibility criteria were met by 14 isocaloric trials (n = 290), in which fructose was exchanged isocalorically for other carbohydrate in the diet, and two hypercaloric trials (n = 33), in which fructose supplemented the background diet with excess energy from high-dose fructose compared with the background diet alone (without the excess energy). There was no significant effect in the isocaloric trials (SMD: 0.14 [95% CI: -0.02, 0.30]) with evidence of considerable heterogeneity explained by a single trial. Hypercaloric trials, however, showed a significant postprandial triglyceride raising-effect of fructose (SMD: 0.65 [95% CI: 0.30, 1.01]). LIMITATIONS Most of the available trials were small, short, and of poor quality. Interpretation of the isocaloric trials is complicated by the large influence of a single trial. CONCLUSIONS Pooled analyses show that fructose in isocaloric exchange for other carbohydrate does not increase postprandial triglycerides, although an effect cannot be excluded under all conditions. Fructose providing excess energy does increase postprandial triglycerides. Larger, longer, and higher-quality trials are needed. PROTOCOL REGISTRATION ClinicalTrials.gov identifier, NCT01363791.

Collaboration


Dive into the Russell J. de Souza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge