Russell J. Garwood
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell J. Garwood.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Derek E. G. Briggs; Derek J. Siveter; David J. Siveter; Mark D. Sutton; Russell J. Garwood; David A. Legg
The basic arrangement of limbs in euarthropods consists of a uniramous head appendage followed by a series of biramous appendages. The body is divided into functional units or tagmata which are usually distinguished by further differentiation of the limbs. The living horseshoe crabs are remnants of a much larger diversity of aquatic chelicerates. The limbs of the anterior and posterior divisions of the body of living horseshoe crabs differ in the loss of the outer and inner ramus, respectively, of an ancestral biramous limb. Here we report a new fossil horseshoe crab from the mid-Silurian Lagerstätte in Herefordshire, United Kingdom (approximately 425 Myr B.P.), a site that has yielded a remarkably preserved assemblage of soft-bodied fossils. The limbs of the new form can be homologized with those of living Limulus, but retain an ancestral biramous morphology. Remarkably, however, the two limb branches originate separately, providing fossil evidence to suggest that repression or loss of gene expression might have given rise to the appendage morphology of Limulus. Both branches of the prosomal limbs of this new fossil are robust and segmented in contrast to their morphology in Cambrian arthropods, revealing that a true biramous limb was once present in chelicerates as well as in the mandibulates.
Biology Letters | 2009
Russell J. Garwood; Jason A. Dunlop; Mark D. Sutton
A new approach to maximize data recovery from siderite-hosted fossils is presented. Late Carboniferous trigonotarbids (Arachnida: Trigonotarbida) from Coseley, UK, were chosen to assess the potential of high-resolution X-ray micro-tomography (XMT). Three-dimensional computer reconstruction visualizes the animals at 20 µm or better resolution, resolving subtle and previously unseen details. Novel data recovered includes (possibly plesiomorphic) retention of endites on leg coxae of Cryptomartus hindi (Anthracomartidae) and highlights further similarities between this family and the Devonian Palaeocharinidae. Also revealed is a flattened body with robust anterior limbs, implying a hunting stance similar to modern crab spiders (Thomisidae). Eophrynus prestvicii (Eophrynidae) had more gracile limbs but a heavily ornamented body, with newly identified upward-pointing marginal spines on the opisthosoma. Its habitus is comparable with certain modern laniatorid harvestmen (Opiliones). These findings demonstrate the potential of XMT to revolutionize the study of siderite-hosted Coal Measures fossils.
PeerJ | 2014
Russell J. Garwood; Jason A. Dunlop
Arachnids are an important group of arthropods. They are: diverse and abundant; a major constituent of many terrestrial ecosystems; and possess a deep and extensive fossil record. In recent years a number of exceptionally preserved arachnid fossils have been investigated using tomography and associated techniques, providing valuable insights into their morphology. Here we use X-ray microtomography to reconstruct members of two extinct arachnid orders. In the Haptopoda, we demonstrate the presence of ‘clasp-knife’ chelicerae, and our novel redescription of a member of the Phalangiotarbida highlights leg details, but fails to resolve chelicerae in the group due to their small size. As a result of these reconstructions, tomographic studies of three-dimensionally preserved fossils now exist for three of the four extinct orders, and for fossil representatives of several extant ones. Such studies constitute a valuable source of high fidelity data for constructing phylogenies. To illustrate this, here we present a cladistic analysis of the chelicerates to accompany these reconstructions. This is based on a previously published matrix, expanded to include fossil taxa and relevant characters, and allows us to: cladistically place the extinct arachnid orders; explicitly test some earlier hypotheses from the literature; and demonstrate that the addition of fossils to phylogenetic analyses can have broad implications. Phylogenies based on chelicerate morphology—in contrast to molecular studies—have achieved elements of consensus in recent years. Our work suggests that these results are not robust to the addition of novel characters or fossil taxa. Hypotheses surrounding chelicerate phylogeny remain in a state of flux.
Journal of the Royal Society Interface | 2013
Tristan Lowe; Russell J. Garwood; Thomas J. Simonsen; Robert S. Bradley; Philip J. Withers
Studies of model insects have greatly increased our understanding of animal development. Yet, they are limited in scope to this small pool of model species: a small number of representatives for a hyperdiverse group with highly varied developmental processes. One factor behind this narrow scope is the challenging nature of traditional methods of study, such as histology and dissection, which can preclude quantitative analysis and do not allow the development of a single individual to be followed. Here, we use high-resolution X-ray computed tomography (CT) to overcome these issues, and three-dimensionally image numerous lepidopteran pupae throughout their development. The resulting models are presented in the electronic supplementary material, as are figures and videos, documenting a single individual throughout development. They provide new insight and details of lepidopteran metamorphosis, and allow the measurement of tracheal and gut volume. Furthermore, this study demonstrates early and rapid development of the tracheae, which become visible in scans just 12 h after pupation. This suggests that there is less remodelling of the tracheal system than previously expected, and is methodologically important because the tracheal system is an often-understudied character system in development. In the future, this form of time-lapse CT-scanning could allow faster and more detailed developmental studies on a wider range of taxa than is presently possible.
Nature Communications | 2011
Russell J. Garwood; Jason A. Dunlop; Gonzalo Giribet; Mark D. Sutton
Harvestmen, the third most-diverse arachnid order, are an ancient group found on all continental landmasses, except Antarctica. However, a terrestrial mode of life and leathery, poorly mineralized exoskeleton makes preservation unlikely, and their fossil record is limited. The few Palaeozoic species discovered to date appear surprisingly modern, but are too poorly preserved to allow unequivocal taxonomic placement. Here, we use high-resolution X-ray micro-tomography to describe two new harvestmen from the Carboniferous (∼305 Myr) of France. The resulting computer models allow the first phylogenetic analysis of any Palaeozoic Opiliones, explicitly resolving both specimens as members of different extant lineages, and providing corroboration for molecular estimates of an early Palaeozoic radiation within the order. Furthermore, remarkable similarities between these fossils and extant harvestmen implies extensive morphological stasis in the order. Compared with other arachnids--and terrestrial arthropods generally--harvestmen are amongst the first groups to evolve fully modern body plans.
Biology Letters | 2010
Russell J. Garwood; Mark D. Sutton
Computer reconstructions of Archimylacris eggintoni, a Carboniferous stem-group dictyopteran (‘roachoid’), are presented. A siderite-hosted specimen was scanned using high-resolution X-ray microtomography (µCT), and a ‘virtual fossil’ was created with a resolution of 17.7 µm. This has revealed the morphology in great detail, including adhesive limb structures indicative of climbing and specializations for rapid movement. The antennae are filiform, and the mandibles are comparable to those of certain extant cockroaches, suggesting a similar generalist, saprophagous diet. The reconstruction reveals a high degree of specialization, and provides insights into the mode of life of these common Palaeozoic insects. Further µCT study of insect fossils has the potential to supplement wing venation with new characters, and hence improve fossil insect phylogenies.
PLOS ONE | 2012
Russell J. Garwood; Andrew J. Ross; Daniel Sotty; Dominique Chabard; Sylvain Charbonnier; Mark D. Sutton; Philip J. Withers
Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One–Anebos phrixos gen. et sp. nov.–is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles’ palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work.
Proceedings of the Royal Society B - Biological Sciences , 284 , Article 20170194. (2017) | 2017
Thomas Davies; Imran A. Rahman; Stephan Lautenschlager; John A. Cunningham; Robert J. Asher; Paul M. Barrett; Karl T. Bates; Stefan Bengtson; Roger B. J. Benson; Doug M. Boyer; José Braga; Jen A. Bright; Leon P. A. M. Claessens; Philip G. Cox; Xi-Ping Dong; Alistair R. Evans; Peter L. Falkingham; Matt Friedman; Russell J. Garwood; Anjali Goswami; John R. Hutchinson; Nathan Jeffery; Zerina Johanson; Renaud Lebrun; Carlos Martínez-Pérez; Jesús Marugán-Lobón; Paul O'Higgins; Brian D. Metscher; Maeva J. Orliac; Timothy Rowe
Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.
Evolution: Education and Outreach | 2012
Imran A. Rahman; Keith Adcock; Russell J. Garwood
Computer-aided 3-D reconstruction of fossils, or virtual paleontology, is an increasingly common and powerful technique. It is now regularly used for research in paleontology, yet to date has impacted little on public outreach and science communication; however, it is ideally suited for these purposes, being increasingly cheap and available, dynamic and exciting, and applicable to a range of topics. Here, we provide an introduction to the field, and a case study of its use for a public engagement event. The steps involved in creating such an educational resource are outlined, and include computed tomography scanning, digital visualization, and 3-D printing of fossils. We emphasize the value of virtual fossils for science communication; they allow for diverse learning styles in a variety of topics. In the future, we hope that virtual paleontology will become a mainstay of communicating the history of life, thereby promoting accurate understanding of evolution.
Palaeontologia Electronica | 2012
Russell J. Garwood; Mark D. Sutton
The enigmatic Upper Carboniferous arthropod genus Camptophyllia is known from 11 fossils, found at five Coal Measures Lagerstätten. These siderite-hosted fossils reveal only the organism’s dorsal surface – its ventral and appendage morphology is entirely unknown, hampering efforts to place the genus taxonomically or phylogenetically. This study reports the application of high-resolution X-ray micro-tomography (XMT) to six Camptophyllia specimens, from four Carboniferous Lagerstätten. This XMT-based restudy has provided new morphological detail, confirming the anteriormost segment is cephalic and facilitating more informed speculation regarding the organism’s mode of life. However, despite scanning all but one of the known representatives of the genus, ventral anatomy has not been resolved; it is possible this is taphonomic, resulting from a poorly sclerotized ventral region. Pending the discovery of further material, the affinities of Camptophyllia remain unclear. Russell J. Garwood. Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Oxford Rd., Manchester M13 9PL, UK, [email protected] Mark Sutton. Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK, [email protected]