Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell J. Kohel is active.

Publication


Featured researches published by Russell J. Kohel.


Nature Genetics | 2012

The draft genome of a diploid cotton Gossypium raimondii

Kunbo Wang; Zhiwen Wang; Fuguang Li; Wuwei Ye; Wang J; Guoli Song; Zhen Yue; Lin Cong; Haihong Shang; Shilin Zhu; Changsong Zou; Qin Li; Youlu Yuan; Cairui Lu; Hengling Wei; Caiyun Gou; Zequn Zheng; Ye Yin; Xueyan Zhang; Kun Liu; Bo Wang; Chi Man Song; Nan Shi; Russell J. Kohel; Richard G. Percy; John Z. Yu; Yu-Xian Zhu; Jun Wang; Shuxun Yu

We have sequenced and assembled a draft genome of G. raimondii, whose progenitor is the putative contributor of the D subgenome to the economically important fiber-producing cotton species Gossypium hirsutum and Gossypium barbadense. Over 73% of the assembled sequences were anchored on 13 G. raimondii chromosomes. The genome contains 40,976 protein-coding genes, with 92.2% of these further confirmed by transcriptome data. Evidence of the hexaploidization event shared by the eudicots as well as of a cotton-specific whole-genome duplication approximately 13–20 million years ago was observed. We identified 2,355 syntenic blocks in the G. raimondii genome, and we found that approximately 40% of the paralogous genes were present in more than 1 block, which suggests that this genome has undergone substantial chromosome rearrangement during its evolution. Cotton, and probably Theobroma cacao, are the only sequenced plant species that possess an authentic CDN1 gene family for gossypol biosynthesis, as revealed by phylogenetic analysis.


Nature Genetics | 2014

Genome sequence of the cultivated cotton Gossypium arboreum

Fuguang Li; Guangyi Fan; Kunbo Wang; Fengming Sun; Youlu Yuan; Guoli Song; Qin Li; Zhiying Ma; Cairui Lu; Changsong Zou; Wenbin Chen; Xinming Liang; Haihong Shang; Weiqing Liu; Chengcheng Shi; Guanghui Xiao; Caiyun Gou; Wuwei Ye; Xun Xu; Xueyan Zhang; Hengling Wei; Zhifang Li; Guiyin Zhang; Wang J; Kun Liu; Russell J. Kohel; Richard G. Percy; John Z. Yu; Yu-Xian Zhu; Jun Wang

The complex allotetraploid nature of the cotton genome (AADD; 2n = 52) makes genetic, genomic and functional analyses extremely challenging. Here we sequenced and assembled the Gossypium arboreum (AA; 2n = 26) genome, a putative contributor of the A subgenome. A total of 193.6 Gb of clean sequence covering the genome by 112.6-fold was obtained by paired-end sequencing. We further anchored and oriented 90.4% of the assembly on 13 pseudochromosomes and found that 68.5% of the genome is occupied by repetitive DNA sequences. We predicted 41,330 protein-coding genes in G. arboreum. Two whole-genome duplications were shared by G. arboreum and Gossypium raimondii before speciation. Insertions of long terminal repeats in the past 5 million years are responsible for the twofold difference in the sizes of these genomes. Comparative transcriptome studies showed the key role of the nucleotide binding site (NBS)-encoding gene family in resistance to Verticillium dahliae and the involvement of ethylene in the development of cotton fiber cells.


Nature Biotechnology | 2015

Genome sequence of cultivated Upland cotton ( Gossypium hirsutum TM-1) provides insights into genome evolution

Fuguang Li; Guangyi Fan; Cairui Lu; Guanghui Xiao; Changsong Zou; Russell J. Kohel; Zhiying Ma; Haihong Shang; Xiongfeng Ma; Jianyong Wu; Xinming Liang; Gai Huang; Richard G. Percy; Kun Liu; Weihua Yang; Wenbin Chen; Xiongming Du; Chengcheng Shi; Youlu Yuan; Wuwei Ye; Xin Liu; Xueyan Zhang; Weiqing Liu; Hengling Wei; Shoujun Wei; Guodong Huang; Xianlong Zhang; Shuijin Zhu; He Zhang; Fengming Sun

Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6%∼96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.


Plant Physiology | 2007

Toward Sequencing Cotton (Gossypium) Genomes

Z. Jeffrey Chen; Brian E. Scheffler; Elizabeth S. Dennis; Barbara A. Triplett; Tianzhen Zhang; Wangzhen Guo; Xiao-Ya Chen; David M. Stelly; Pablo D. Rabinowicz; Christopher D. Town; Tony Arioli; Curt L. Brubaker; Roy G. Cantrell; Jean Marc Lacape; Mauricio Ulloa; Peng Chee; Alan R. Gingle; Candace H. Haigler; Richard G. Percy; Sukumar Saha; Thea A. Wilkins; Robert J. Wright; Allen Van Deynze; Yuxian Zhu; Shuxun Yu; Ibrokhim Y. Abdurakhmonov; Ishwarappa S. Katageri; P. Ananda Kumar; Mehboob-ur-Rahman; Yusuf Zafar

Despite rapidly decreasing costs and innovative technologies, sequencing of angiosperm genomes is not yet undertaken lightly. Generating larger amounts of sequence data more quickly does not address the difficulties of sequencing and assembling complex genomes de novo. The cotton ( Gossypium spp.)


Euphytica | 2001

Molecular mapping and characterization of traits controlling fiber quality in cotton

Russell J. Kohel; John Z. Yu; Yong-Ha Park; Gerard R. Lazo

Cotton (Gossypium spp) is the worlds leading natural fiber crop. Genetic manipulation continues to play a key role in the improvement of fiber quality properties. By use of DNA-based molecular markers and a polymorphic mapping population derived from an inter specific cross between TM-1 (G. hirsutum) and 3-79 (G. barbadense), thirteen quantitative trait loci (QTLs) controlling fiber quality properties were identified in 3-79, an extra long staple (ELS) cotton. Four QTLs influenced bundle fiber strength, three influenced fiber length, and six influenced fiber fineness. These QTLs were located on different chromosomes or linkage groups and collectively explained 30% to 60%of the total phenotypic variance for each fiber quality property in the F2 population. The effects and modes of action for the individual QTLs were characterized with 3-79 alleles in TM-1 genetic background. The results indicated more recessive than dominant, with much less additive effect in the gene mode. Transgressive segregation was observed for fiber fineness that could be beneficial to improvement of this trait. Molecular markers linked to fiber quality QTLs would be most effective in marker-assisted selection (MAS) of these recessive alleles in cotton breeding programs.


Theoretical and Applied Genetics | 2003

Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection

Tianzhen Zhang; Youlu Yuan; John Z. Yu; Wangzhen Guo; Russell J. Kohel

Abstract.Fiber is a basic raw material in the textile industry. The changes in spinning technology have in common the requirement of unique and often greater cotton fiber quality, especially strength, for processing. We used a Gossypium anomalum introgression line, 7235, characterized by good fiber quality properties, to identify molecular markers linked to fiber-strength QTLs. By the use of F2 and F3 populations derived from a cross between 7235 and TM-1, a genetic standard of Upland cotton, nine molecular markers, three SSRs and six RAPDs, were identified to be linked to two QTLs for fiber strength. One was a major QTL, QTLFS1, detected both in Nanjing and Hainan, China, and the Texas College Station, USA. It was found to be associated with eight markers and explained more than 30% of the phenotypic variation. QTLFS1 was mapped to chromosome 10. The major QTL in 7235 was identified to be transferred from an Acala 3080 cotton. The marker-assisted selection revealed that DNA markers linked to this QTL could be used in increasing the fiber strength of commercial cultivars.


Theoretical and Applied Genetics | 2006

Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping

Kai Wang; Xianliang Song; Zhiguo Han; Wangzhen Guo; John Z. Yu; Jing Sun; J. J. Pan; Russell J. Kohel; Tianzhen Zhang

Significant progress has been made in the construction of genetic maps in the tetraploid cotton Gossypium hirsutum. However, six linkage groups (LGs) have still not been assigned to specific chromosomes, which is a hindrance for integrated genetic map construction. In the present research, specific bacterial artificial chromosome (BAC) clones constructed in G. hirsutum acc. TM-1 for these six LGs were identified by screening the BAC library using linkage group-specific simple-sequence repeats markers. These BAC clones were hybridized to ten translocation heterozygotes of G. hirsutum. L as BAC-fluorescence in situ hybridization probes, which allowed us to assign these six LGs A01, A02, A03, D02, D03, and D08 to chromosomes 13, 8, 11, 21, 24, and 19, respectively. Therefore, the 13 homeologous chromosome pairs have been established, and we have proposed a new chromosome nomenclature for tetraploid cotton.


G3: Genes, Genomes, Genetics | 2012

A High-Density Simple Sequence Repeat and Single Nucleotide Polymorphism Genetic Map of the Tetraploid Cotton Genome

John Z. Yu; Russell J. Kohel; David D. Fang; Jaemin Cho; Allen Van Deynze; Mauricio Ulloa; Steven M. Hoffman; Alan E. Pepper; David M. Stelly; Johnie N. Jenkins; Sukumar Saha; Siva P. Kumpatla; Manali R. Shah; William V. Hugie; Richard G. Percy

Genetic linkage maps play fundamental roles in understanding genome structure, explaining genome formation events during evolution, and discovering the genetic bases of important traits. A high-density cotton (Gossypium spp.) genetic map was developed using representative sets of simple sequence repeat (SSR) and the first public set of single nucleotide polymorphism (SNP) markers to genotype 186 recombinant inbred lines (RILs) derived from an interspecific cross between Gossypium hirsutum L. (TM-1) and G. barbadense L. (3-79). The genetic map comprised 2072 loci (1825 SSRs and 247 SNPs) and covered 3380 centiMorgan (cM) of the cotton genome (AD) with an average marker interval of 1.63 cM. The allotetraploid cotton genome produced equivalent recombination frequencies in its two subgenomes (At and Dt). Of the 2072 loci, 1138 (54.9%) were mapped to 13 At-subgenome chromosomes, covering 1726.8 cM (51.1%), and 934 (45.1%) mapped to 13 Dt-subgenome chromosomes, covering 1653.1 cM (48.9%). The genetically smallest homeologous chromosome pair was Chr. 04 (A04) and 22 (D04), and the largest was Chr. 05 (A05) and 19 (D05). Duplicate loci between and within homeologous chromosomes were identified that facilitate investigations of chromosome translocations. The map augments evidence of reciprocal rearrangement between ancestral forms of Chr. 02 and 03 versus segmental homeologs 14 and 17 as centromeric regions show homeologous between Chr. 02 (A02) and 17 (D02), as well as between Chr. 03 (A03) and 14 (D03). This research represents an important foundation for studies on polyploid cottons, including germplasm characterization, gene discovery, and genome sequence assembly.


Molecular Plant-microbe Interactions | 2004

Cloning, Characterization, and Evolution of the NBS-LRR-Encoding Resistance Gene Analogue Family in Polyploid Cotton (Gossypium hirsutum L.)

Limei He; Chunguang Du; Lina Covaleda; Zhanyou Xu; A. Forest Robinson; John Z. Yu; Russell J. Kohel; Hong-Bin Zhang

The nucleotide-binding site-leucine-rich repeat (NBS-LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. We cloned the NBS-LRR-encoding genes from polyploid cotton by a polymerase chain reaction-based approach. A sample of 150 clones was selected from the NBS-LRR gene sequence library and was sequenced, and 61 resistance gene analogs (RGA) were identified. Sequence analysis revealed that RGA are abundant and highly diverged in the cotton genome and could be categorized into 10 distinct subfamilies based on the similarities of their nucleotide sequences. The numbers of members vary many fold among different subfamilies, and gene index analysis showed that each of the subfamilies is at a different stage of RGA family evolution. Genetic mapping of a selection of RGA indicates that the RGA reside on a limited number of the cotton chromosomes, with those from a single subfamily tending to cluster and two of the RGA loci being colocalized with the cotton bacterial blight resistance genes. The distribution of RGA between the two subgenomes A and D of cotton is uneven, with RGA being more abundant in the A subgenome than in the D subgenome. The data provide new insights into the organization and evolution of the NBS-LRR-encoding RGA family in polyploid plants.


Advances in Agronomy | 1990

Distribution, collection, and evaluation of Gossypium.

A. Edward Percival; Russell J. Kohel

Publisher Summary Cotton is of enormous importance to the world today. It is not only important economically in international trade, but is also used to clothe a substantial portion of the worlds population. Cotton is both comfortable and utilitarian in nature. As a natural fiber and feed source, cotton is a renewable agricultural resource, which may help to keep it competitive with synthetic fibers from an environmental and ecological standpoint. Continued research with Gossypium germplasm is essential, as this is a complex genus. Though much has been accomplished in the understanding of the genus, much remains to be done. The genus contains differing ploidy levels that yield a high degree of variability, from highly improved allotetraploid species to wild diploid forms, and this variability has only begun to be tapped as a source of beneficial characteristics. Additionally, much variability may yet be found. A new species has been discovered every two to three years since the late 1950s, and as old areas are explored again, because of better access, and new areas become accessible, more species are likely to be found that provide additional variability and a better understanding of the genus.

Collaboration


Dive into the Russell J. Kohel's collaboration.

Top Co-Authors

Avatar

John Z. Yu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Richard G. Percy

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Sukumar Saha

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Mauricio Ulloa

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Tianzhen Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jing Yu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wangzhen Guo

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge