Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell L. Scott is active.

Publication


Featured researches published by Russell L. Scott.


Ecology | 2005

ECOHYDROLOGICAL IMPLICATIONS OF WOODY PLANT ENCROACHMENT

Travis E. Huxman; Bradford P. Wilcox; David D. Breshears; Russell L. Scott; Keirith A. Snyder; Eric E. Small; K. R. Hultine; William T. Pockman; A. N. D. Robert B. Jackson

Increases in the abundance or density of woody plants in historically semiarid and arid grassland ecosystems have important ecological, hydrological, and socioeconomic implications. Using a simplified water-balance model, we propose a framework for con- ceptualizing how woody plant encroachment is likely to affect components of the water cycle within these ecosystems. We focus in particular on streamflow and the partitioning of evapotranspiration into evaporation and transpiration. On the basis of this framework, we suggest that streamflow and evaporation processes are affected by woody plant en- croachment in different ways, depending on the degree and seasonality of aridity and the availability of subsurface water. Differences in landscape physiography, climate, and runoff mechanisms mediate the influence of woody plants on hydrological processes. Streamflow is expected to decline as a result of woody plant encroachment in landscapes dominated by subsurface flow regimes. Similarly, encroachment of woody plants can be expected to produce an increase in the fractional contribution of bare soil evaporation to evapotrans- piration in semiarid ecosystems, whereas such shifts may be small or negligible in both subhumid and arid ecosystems. This framework for considering the effects of woody plant encroachment highlights important ecological and hydrological interactions that serve as a basis for predicting other ecological aspects of vegetation change—such as potential changes in carbon cycling within an ecosystem. In locations where woody plant encroach- ment results in increased plant transpiration and concurrently the availability of soil water is reduced, increased accumulation of carbon in soils emerges as one prediction. Thus, explicitly considering the ecohydrological linkages associated with vegetation change pro- vides needed information on the consequences of woody plant encroachment on water yield, carbon cycling, and other processes.


Geophysical Research Letters | 2008

Measuring soil moisture content non‐invasively at intermediate spatial scale using cosmic‐ray neutrons

Marek Zreda; Darin Desilets; Ty P. A. Ferré; Russell L. Scott

[3] We present a novel non-invasive technique that utilizes the dependence of the low-energy cosmic-ray neutron intensity above the ground surface on the hydrogen content of soil. The cosmic-ray method is based on slowing down and thermalization of cosmic-ray neutrons by hydrogen atoms present in soil. Soil moisture greatly affects the rate at which fast neutrons are moderated, controlling neutron concentration in soils and prescribing their emission into the air. Dry soils have low moderating power and are therefore highly emissive; wet soils are more moderating and therefore less emissive as highly moderated neutrons are more efficiently removed from the system. The change in soil neutron emission is sufficient to produce a clear signal in the neutron intensity above the surface. For soil moisture content varying from zero to 40% volumetrically, the corresponding decrease in cosmic-ray neutron intensity above the surface is 60%, a hundredth of which can easily be measured using a neutron detector.


Agricultural and Forest Meteorology | 2003

Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor

Enrico A. Yepez; David G. Williams; Russell L. Scott; Guanghui Lin

The relative contributions of overstory and understory plant transpiration and soil evaporation to total evapotranspiration (ET) in a semiarid savanna woodland were determined from stable isotope measurements of atmospheric water vapor. The savanna overstory was dominated by the deeply rooted, woody legume Prosopis velutina (“mesquite”), and the understory was dominated by a perennial C4 grass, Sporobolus wrightii. “Keeling plots” (turbulent mixing relationships) were generated from isotope ratios (D and 18 O) of atmospheric water vapor collected within the tree (3–14 m) and understory (0.1–1 m) canopies during peak (July) and post-monsoon (September) periods of 2001. The unique regression intercepts from upper and lower profiles were used to partition the ET flux from the understory layer separately from that of the whole ecosystem. Although ET partitioning was problematic during the first sampling period in July, our results in September provided support to the validity of this method for measuring and understanding the dynamic behavior of water balance components in this semiarid savanna woodland. During the post-monsoon period (22nd September), transpiration accounted for 85% of ecosystem ET. Transpiration by the grass layer accounted for 50% of the understory ET over the same period. The total ecosystem ET estimated by eddy covariance (EC) on 22nd September was 3.5 mm per day. Based on partitioning by the isotope method, 2.5 mm per day (70%) was from tree transpiration and 0.5 mm per day (15%) was from transpiration by the grass layer. Independent estimates of overstory and understory ET partitioning from distributed understory EC measurements were remarkably consistent with our isotope approach.


Journal of Geophysical Research | 2009

Effects of seasonal drought on net carbon dioxide exchange from a woody‐plant‐encroached semiarid grassland

Russell L. Scott; G. Darrel Jenerette; Daniel L. Potts; Travis E. Huxman

[1] Annual precipitation in the central and southern warm-desert region of North America is distributed climatologically between summer and winter periods with two prominent dry periods between them. We used energy and carbon dioxide (CO2) fluxes from eddy covariance along with standard meteorological and soil moisture measurements at a semiarid savanna in southern Arizona, United States, to better understand the consequences of warm or cool season drought on ecosystem CO2 exchange in these bimodally forced water-limited regions. Over the last 100 years, this historic grassland has converted to a savanna by the encroachment of the native mesquite tree (Prosopis velutina Woot.). During each of the 4 years of observation (2004–2007), annual precipitation (P) was below average, but monsoon (July–September) P was both above and below average while cool-season (December–March) P was always less than average by varying degrees. The ecosystem was a net source of CO2 to the atmosphere, ranging from 14 to 95 g C m � 2 yr � 1 with the strength of the source increasing with decreasing precipitation. When the rainfall was closest to the long-term average in its distribution and amount, the ecosystem was essentially carbon neutral. Summer drought resulted in increased carbon losses due mainly to a shortening of the growing season and the length of time later in the season when photosynthetic gain exceeds respiration loss. Severe cool season drought led to decreased spring carbon uptake and seemingly enhanced summer respiration, resulting in conditions that led to the greatest annual net carbon loss.


Water Resources Research | 2000

Modeling multiyear observations of soil moisture recharge in the semiarid American Southwest.

Russell L. Scott; W. James Shuttleworth; T. O. Keefer; A. W. Warrick

The multiyear, root zone soil moisture redistribution characteristics in a semiarid rangeland in southeastern Arizona were evaluated to determine the magnitude and variability of deep-profile, wintertime soil moisture recharge. Intermittent observations from 1990 to 1998 of average volumetric soil moisture under shrub and grass cover showed that significant recharge beyond 0.30 m principally occurs only in the wintertime when the vegetation is senescent and does not use the infiltrating water. Using the physically based, variably saturated flow model HYDRUS, wintertime observations were modeled to determine the recharge of soil moisture at different depth intervals in the vadose zone. Two approaches were carried out to estimate the soil model parameters. The first was to use basic soils data from detailed profile descriptions in conjunction with pedotransfer functions. The second parameter estimation strategy was to use an automatic parameter search algorithm to find the optimal soil parameters that minimize the error between the model-computed volumetric water content and observations. Automatic calibration of the model was performed using the shuffled complex evolution algorithm (SCE-UA), and it proved possible to satisfactorily describe the vadose zone observations using a simplified description of the soil profile with optimal model parameters. Simulations with the optimized model indicate that significant recharge of vadose zone does occur well beyond 0.30 m in winter but that such recharge is highly variable from year to year and appears correlated with El Nino episodes. This water could serve as a source of plant water for deeper-rooted plants that are active during the subsequent spring season, thereby exploiting a niche that the more abundant, shallower-rooted plants that are active during the summer rainy season do not. However, the year-to-year variability of the winter precipitation and consequent deep soil moisture recharge indicates that the deeper-rooted vegetation in this region must retain the ability to obtain moisture from the near surface in order to meet its water demands if necessary.


Agricultural and Forest Meteorology | 2000

Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

David C. Goodrich; Russell L. Scott; Jiaguo Qi; B. Goff; Carl L. Unkrich; M.S Moran; David G. Williams; Sean M. Schaeffer; Keirith A. Snyder; R MacNish; Thomas Maddock; D. Pool; A. Chehbouni; D. I. Cooper; William E. Eichinger; William James Shuttleworth; Yann Kerr; R. Marsett; W. Ni

In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration (ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20‐30 m) and non-uniform linear nature of the forest gallery. Short-term (2‐4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman‐Monteith model to enable temporal extrapolation between synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use estimates for the riparian corridor were obtained. To validate these models, a 90-day pre-monsoon water balance over a 10 km section of the river was carried out. All components of the water balance, including riparian ET, were


Rangeland Ecology & Management | 2010

Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems Derived From Flux-Tower Measurements

Tagir G. Gilmanov; Luis Miguel Igreja Aires; Zoltán Barcza; V. S. Baron; L. Belelli; Jason Beringer; David P. Billesbach; Damien Bonal; James A. Bradford; Eric Ceschia; David R. Cook; Chiara A. R. Corradi; Albert B. Frank; Damiano Gianelle; Cristina Gimeno; T. Gruenwald; Haiqiang Guo; Niall P. Hanan; László Haszpra; J. Heilman; A. Jacobs; Michael Jones; Douglas A. Johnson; Gerard Kiely; Shenggong Li; Vincenzo Magliulo; E.J. Moors; Zoltán Nagy; M. Nasyrov; Clenton E. Owensby

Abstract Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167–183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439). Maximum values of the quantum yield (α  =  75 mmol · mol−1), photosynthetic capacity (Amax  =  3.4 mg CO2 · m−2 · s−1), gross photosynthesis (Pg,max  =  116 g CO2 · m−2 · d−1), and ecological light-use efficiency (εecol  =  59 mmol · mol−1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8 600 g CO2 · m−2 · yr−1), total ecosystem respiration (7 900 g CO2 · m−2 · yr−1), and net CO2 exchange (2 400 g CO2 · m−2 · yr−1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2 · m−2 · yr−1 for intensive grasslands and 933 g CO2 · m−2 · d−1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stock.


Geophysical Research Letters | 2008

Observed relation between evapotranspiration and soil moisture in the North American monsoon region

Enrique R. Vivoni; Hernan A. Moreno; Giuseppe Mascaro; Julio C. Rodríguez; Christopher J. Watts; Jaime Garatuza-Payan; Russell L. Scott

] Soil moisture control on evapotranspiration is poorlyunderstood in ecosystems experiencing seasonal greening.In this study, we utilize a set of multi-year observations atfour eddy covariance sites along a latitudinal gradient invegetation greening to infer the ET-q relation during theNorth American monsoon. Results reveal significantseasonal, interannual and ecosystem variations in theobserved ET-q relation directly linked to vegetationgreening. In particular, monsoon-dominated ecosystemsadjust their ET-q relation, through changes in unstressedET and plant stress threshold, to cope with differences inwater availability. Comparisons of the observed relations tothe North American Regional Reanalysis dataset reveallarge biases that increase where vegetation greening is moresignificant. The analysis presented here can be used to guideimprovements in land surface model parameterization inwater-limited ecosystems.


Agricultural and Forest Meteorology | 2000

The water use of two dominant vegetation communities in a semiarid riparian ecosystem

Russell L. Scott; W. James Shuttleworth; David C. Goodrich; Thomas Maddock

Consumptive water use from riparian evapotranspiration is a large component of many semiarid basins’ groundwater budgets — comparable in magnitude to mountain front recharge and surface water discharge. In most long-term groundwater studies the amount of water used by phreatophytes is estimated by empirical formulae and extrapolation of measurements taken elsewhere. These approaches are problematic due to the uncertainties regarding the vegetation’s water source (e.g., groundwater or recent precipitation) and its magnitude. Using micrometeorological techniques in this study, surface energy and water fluxes were measured for an annual cycle over two dominant types of vegetation in the riparian floodplain of the San Pedro River in southeastern Arizona. The vegetation communities were a perennial, floodplain sacaton grassland (Sporobolus wrightii) and a tree/shrub grouping composed largely of mesquite (Prosopis velutina). These measurements are compared with estimates from previous studies. Additionally, measurements of soil water content and water table levels are used to infer the dominant sources of the evaporated water. The results indicate that the grassland relied primarily on recent precipitation, while the mesquite obtained water from deeper in the soil profile. Neither appears to be strongly phreatophytic, which suggests that the dominant, natural groundwater withdrawals in the Upper San Pedro Basin are mainly confined to the narrow cottonwood/willow gallery that lines the river.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Warm spring reduced carbon cycle impact of the 2012 US summer drought

Sebastian Wolf; Trevor F. Keenan; Joshua B. Fisher; Dennis D. Baldocchi; Ankur R. Desai; Andrew D. Richardson; Russell L. Scott; Beverly E. Law; Marcy E. Litvak; Nathaniel A. Brunsell; Wouter Peters; Ingrid T. van der Laan-Luijkx

Significance Carbon uptake by terrestrial ecosystems mitigates the impact of anthropogenic fossil fuel emissions on atmospheric CO2 concentrations, but the strength of this carbon sink is highly sensitive to large-scale extreme climate events. In 2012, the United States experienced the most severe drought since the Dust Bowl period, along with the warmest spring on record. Here, we quantify the impact of this climate anomaly on the carbon cycle. Our results show that warming-induced earlier vegetation activity increased spring carbon uptake, and thus compensated for reduced carbon uptake during the summer drought in 2012. This compensation, however, came at the cost of soil moisture depletion from increased spring evapotranspiration that likely enhanced summer heating through land-atmosphere coupling. The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks.

Collaboration


Dive into the Russell L. Scott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Goodrich

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Erik P. Hamerlynck

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel A. Biederman

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William L. Cable

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge