Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell N. Drysdale is active.

Publication


Featured researches published by Russell N. Drysdale.


Nature Geoscience | 2009

Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise

Michael L. Griffiths; Russell N. Drysdale; Michael K. Gagan; Jian-xin Zhao; Linda K. Ayliffe; John Hellstrom; Wahyu Soepri Hantoro; Silvia Frisia; Y-x Feng; Ian Martin Cartwright; E. St. Pierre; Mathew J Fischer; Bambang W. Suwargadi

The Australian–Indonesian summer monsoon affects rainfall variability across the Indo–Pacific region. Reconstructions of monsoon strength from stalagmites show that precipitation increased from 11,000 to 7,000 years ago, as rising global sea level caused the flooding of the Indonesian continental shelf. The Australian–Indonesian summer monsoon affects rainfall variability and hence terrestrial productivity in the densely populated tropical Indo–Pacific region. It has been proposed that the main control of summer monsoon precipitation on millennial timescales is local insolation1,2,3, but unravelling the mechanisms that have influenced monsoon variability and teleconnections has proven difficult, owing to the lack of high-resolution records of past monsoon behaviour. Here we present a precisely dated reconstruction of monsoon rainfall over the past 12,000 years, based on oxygen isotope measurements from two stalagmites collected in southeast Indonesia. We show that the summer monsoon precipitation increased during the Younger Dryas cooling event, when Atlantic meridional overturning circulation was relatively weak4. Monsoon precipitation intensified even more rapidly from 11,000 to 7,000 years ago, when the Indonesian continental shelf was flooded by global sea-level rise5,6,7. We suggest that the intensification during the Younger Dryas cooling was caused by enhanced winter monsoon outflow from Asia and a related southward migration of the intertropical convergence zone8. However, the early Holocene intensification of monsoon precipitation was driven by sea-level rise, which increased the supply of moisture to the Indonesian archipelago.


Geology | 2006

Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone

Russell N. Drysdale; Giovanni Zanchetta; John Hellstrom; Roland Maas; Anthony E. Fallick; Matthew Pickett; Ian Cartwright; Leonardo Piccini

A severe drought in parts of low-latitude northeastern Africa and southwestern Asia ∼4200 yr ago caused major disruption to ancient civilizations. Stable isotope, trace element, and organic fluorescence data from a calcite flowstone collected from the well-watered Alpi Apuane karst of central-western Italy indicate that the climatic event responsible for this drought was also recorded in mid-latitude Europe. Although the timing of this event coincides with an episode of increased ice-rafted debris to the subpolar North Atlantic, the regional ocean-atmosphere response seems atypical of similar Holocene ice-rafting events. Furthermore, comparison of the flowstone data with other regional proxies suggests that the most extreme part of the dry spell occurred toward the end of a longer-term climate anomaly.


Science | 2009

Evidence for Obliquity Forcing of Glacial Termination II

Russell N. Drysdale; John Hellstrom; Giovanni Zanchetta; Anthony E. Fallick; M. F. Sánchez Goñi; Isabelle Couchoud; Janece McDonald; Roland Maas; Gerrit Lohmann; Ilaria Isola

Oblique Reasoning In Milankovich theory, the canonical theory of glaciation and deglaciation, ice sheets wax and wane in response to the amount of summer insolation at a latitude of 65°N, which is consistent with the observed timing of the last deglaciation. The penultimate glaciation behaved quite differently, however. Now, Drysdale et al. (p. 1527, published online 13 August) offer firmer constraints on the timing of the penultimate deglaciation, by correlating a difficult-to-date marine record of ocean volume to a precisely datable nearby speleothem (terrestrial stalagmite). Ocean volume began to increase about 141,000 years ago, thousands of years before the rise in 65°N summer insolation. Thus, instead of the forcing mechanism proposed by Milankovich, variations in Earths obliquity may be mostly responsible for the disappearance of ice sheets. Marine records suggest that the early onset of the penultimate deglaciation was due to changes in Earth’s obliquity. Variations in the intensity of high-latitude Northern Hemisphere summer insolation, driven largely by precession of the equinoxes, are widely thought to control the timing of Late Pleistocene glacial terminations. However, recently it has been suggested that changes in Earth’s obliquity may be a more important mechanism. We present a new speleothem-based North Atlantic marine chronology that shows that the penultimate glacial termination (Termination II) commenced 141,000 ± 2500 years before the present, too early to be explained by Northern Hemisphere summer insolation but consistent with changes in Earth’s obliquity. Our record reveals that Terminations I and II are separated by three obliquity cycles and that they started at near-identical obliquity phases.


The Holocene | 2011

The Holocene climatic evolution of Mediterranean Italy: A review of the continental geological data:

Carlo Giraudi; Michel Magny; Giovanni Zanchetta; Russell N. Drysdale

We present a synthesis of geological, stratigraphic, geomorphological and stable isotope data collected from continental archives to highlight the environmental and climatic differences between the first and second half of the Holocene of central and southern Italy. The beginning of the Holocene is marked by rapid environmental change. In Mediterranean Italy, between c. 9500 cal. BP and c. 6000—5500 cal. BP, average temperatures were probably higher and environmental conditions were generally stable; between c. 9000 and 7000 cal. BP, meteoric precipitation was at its highest. The end of the wetter period seems to occur later, at c. 6000—5000 cal. BP. Since c. 6000—5000 cal. BP, rapid climatic excursions are apparent in different palaeoclimate proxies, with both variability in meteoric precipitation and temperature evident. Of particular relevance is the event occurring at c. 4200 cal. BP. This event heralds a period of significant environmental change in the Apennines and, more generally, in central Italy. Following this event, environmental variability appears most pronounced and frequent. Some environmental changes during the early Holocene and after 4200 cal. BP seem to be in phase with IRD events in the North Atlantic, which suggest: (1) teleconnections between North Atlantic and Mediterranean areas; and (2) a possible influence of North Atlantic meridional overturning circulation in controlling the advection of moisture over the central Mediterranean basin via westerly air masses. The archives used in this review allow us to consider climate evolution as a driver of most of the observed environmental changes.


Geochimica et Cosmochimica Acta | 2003

Climatic significance of seasonal trace element and stable isotope variations in a modern freshwater tufa

Christian Ihlenfeld; Marc D. Norman; Michael K. Gagan; Russell N. Drysdale; Roland Maas; John A. Webb

Abstract We present a continuous ∼14-yr-long (1985 to 1999) high-resolution record of trace element (Mg, Sr, Ba, U) and stable isotope (δ13C, δ18O) variations in a modern freshwater tufa from northwestern Queensland, Australia. By utilizing the temperature dependence of the δ18O signal, an accurate chronology was developed for the sampled profile, which allowed a comparison of the chemical records with hydrological and meteorological observations. As a consequence, it was possible to constrain the relevant geochemical processes relating climate variables, such as temperature and precipitation, to their chemical proxies in the tufa record. Temperatures calculated from the Mg concentrations of the tufa samples provide close approximations of average annual water temperature variations. Furthermore, we demonstrate that temporal changes in (Mg/Ca)water can be estimated using an empirically derived equation relating (Mg/Ca)water to the (Sr/Ba) ratio measured in the tufa samples. By means of this relationship, it is theoretically possible to determine the (Mg/Ca) ratio of paleowaters, and hence to derive reliable estimates of former water temperatures from the Mg concentrations of fossil tufas from the study area. Sympathetic variations in Sr, Ba, and δ13C along the sampled profile record changes in water chemistry, which are most probably caused by variable amounts of calcite precipitation within the vadose zone of the karst aquifer. This process is thought to be markedly subdued whenever the amount of wet-season precipitation exceeds a given threshold. Accordingly, distinct minima in Sr, Ba, and δ13C are interpreted to reflect years with above-average rainfall. The pronounced seasonal and annual variability of the U concentration along the profile is thought to primarily record changes in the U flux from the soil to the water table. We suggest that during intensive rain events U is transported to the phreatic zone by complexing organic colloids, giving rise to conspicuous U maxima in the tufa after above-average wet seasons. This study demonstrates the potential of freshwater tufas to provide valuable information on seasonal temperature and rainfall variations. If tufa deposits turn out to be reasonably resistant to secondary processes, combined investigation of speleothems and tufas from the same area could become a promising approach in future research. While speleothems offer continuous records of long-term paleoenvironmental changes, tufas could provide high-resolution time windows into selected periods of the past.


Geology | 2007

Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial

Russell N. Drysdale; Giovanni Zanchetta; John Hellstrom; Anthony E. Fallick; Janece McDonald; Ian Cartwright

Evidence of millennial-scale cold events following the last interglacial are well preserved in North Atlantic marine cores, Greenland ice, and pollen records from Europe. However, their timing was previously undetermined by radiometric dating. We report the first precise radiometric ages for two such events, C23 (105.1 ± 0.9 ka to 102.6 ± 0.8 ka) and C24 (112.0 ± 0.8 ka and 108.8 ± 1.0 ka), based on stable carbon and oxygen isotope measurements on a stalagmite from Italy (CC28). In addition to providing new information on the duration of these events in southern Europe, the age data provide invaluable tuning points for the Melisey I (C24) and Montaigu (C23) pollen zones identified in western Europe. The former event is of particular significance because it represents the end of the Eemian interglacial forest phase in western Europe. The new age data will also allow fine tuning of the timing and duration of Greenland stadial 24 (equivalent to C23) in the North Greenland Ice Core Project ice core and, via a common gasage chronology, tuning of the Vostok and EPICA (European Project for Ice Coring in Antarctica) ice cores.


Nature Communications | 2013

Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation

Linda K. Ayliffe; Michael K. Gagan; Jian-xin Zhao; Russell N. Drysdale; John Hellstrom; Wahyoe S. Hantoro; Michael L. Griffiths; Emma St Pierre; Joan Cowley; Bambang W. Suwargadi

Recent studies have proposed that millennial-scale reorganization of the ocean-atmosphere circulation drives increased upwelling in the Southern Ocean, leading to rising atmospheric carbon dioxide levels and ice age terminations. Southward migration of the global monsoon is thought to link the hemispheres during deglaciation, but vital evidence from the southern sector of the vast Australasian monsoon system is yet to emerge. Here we present a 230thorium-dated stalagmite oxygen isotope record of millennial-scale changes in Australian-Indonesian monsoon rainfall over the last 31,000 years. The record shows that abrupt southward shifts of the Australian-Indonesian monsoon were synchronous with North Atlantic cold intervals 17,600-11,500 years ago. The most prominent southward shift occurred in lock-step with Heinrich Stadial 1 (17,600-14,600 years ago), and rising atmospheric carbon dioxide. Our findings show that millennial-scale climate change was transmitted rapidly across Australasia and lend support to the idea that the 3,000-year-long Heinrich 1 interval could have been critical in driving the last deglaciation.


Sedimentary Geology | 2003

Are current models of tufa sedimentary environments applicable to tropical systems?: a case study from the Gregory River

Karen D. Carthew; Mark Patrick Taylor; Russell N. Drysdale

Abstract Tufa formation in the Gregory River, tropical northern Australia, is strongly influenced by high evaporation rates, perennially warm water temperatures, construction behaviour of aquatic insect larvae, and regular high magnitude floods. These conditions contrast with those of the cool temperate tufa-depositing streams for which sedimentary models have already been developed. Gregory River tufas occur as multiple series of dams separated by waterholes, indicating that under all climatic conditions there is a persistence of hydraulic factors in controlling the dam-pool sequence in fluvial tufa systems. However, at the scale of individual tufa deposits and facies, the Gregory River system displays a deviation away from current models. Tufa domes, upstream-dipping ramps, calcite rafts and larval facies are all common and important features in both modern and fossil tufas of the Gregory River, but they are not included in current tufa models. Thus, specific sedimentary models need to be developed for seasonally humid tropical tufa systems to understand their formation and interpret them correctly in the rock record.


Geology | 2010

Speleothem climate records from deep time? Exploring the potential with an example from the Permian

Jon D. Woodhead; Robert R. Reisz; David L. Fox; Russell N. Drysdale; John Hellstrom; Roland Maas; Hai Cheng; R. Lawrence Edwards

Speleothems are well-proven archives of terrestrial climate variation, recording mean temperature, rainfall, and surface vegetation data at subannual to millennial resolution. They also form within the generally stable environment of caves, and thus may remain remarkably well preserved for many millions of years and, most important, can be dated radiometrically to provide robust chronologies that do not rely on orbital tuning, ice-flow modeling, or estimates of sediment deposition rates. The recent adaptation of the U-Pb dating technique to speleothems has greatly extended their potential as paleoclimate recorders back into the more distant geological past, well beyond the ∼500 k.y. limit previously imposed by U-series techniques, but the opportunities presented by these new methods have yet to be fully explored. As an extreme example, here we report on samples recovered from Permian cave fills, the oldest radiometrically dated speleothems so far documented. Using state of the art analytical techniques it is possible to determine not only their age and state of preservation, but also to extract apparently nearly pristine climate proxy data. Armed with these methods, it now seems reasonable to apply the lessons learned from more recent speleothems to ancient materials, wherever they can be found, and of whatever age, to generate snapshots of paleoclimate that can be used to greatly refine the records preserved within the sediments and fossils of the time.


Geology | 2015

Duration and dynamics of the best orbital analogue to the present interglacial

Biagio Giaccio; Eleonora Regattieri; Giovanni Zanchetta; Sébastien Nomade; Paul R. Renne; Courtney J. Sprain; Russell N. Drysdale; P.C. Tzedakis; Paolo Messina; Giancarlo Scardia; Andrea Sposato; Franck Bassinot

Past orbital analogues to the current interglacial, such as Marine Isotope Stage 19c (MIS 19c, ca. 800 ka), can provide reliable reference intervals for evaluating the timing and the duration of the Holocene and factors inherent in its climatic progression. Here we present the first high-resolution paleoclimatic record for MIS 19 anchored to a high-precision 40Ar/39Ar chronology, thus fully independent of any a priori assumptions on the orbital mechanisms underlying the climatic changes. It is based on the oxygen isotope compositions of Italian lake sediments showing orbital- to millennial-scale hydrological variability over the Mediterranean between 810 and 750 ka. Our record indicates that the MIS 19c interglacial lasted 10.8 ± 3.7 k.y., comparable to the time elapsed since the onset of the Holocene, and that the orbital configuration at the time of the following glacial inception was very similar to the present one. By analogy, the current interglacial should be close to its end. However, greenhouse gas concentrations at the time of the MIS 19 glacial inception were significantly lower than those of the late Holocene, suggesting that the current interglacial could have already been prolonged by the progressive increase of the greenhouse gases since 8–6 ka, possibly due to early anthropogenic disturbance of vegetation.

Collaboration


Dive into the Russell N. Drysdale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Bajo

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Michael K. Gagan

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Jian-xin Zhao

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda K. Ayliffe

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge