Russell S. Ray
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell S. Ray.
Nature Genetics | 1999
Robert Geisler; Gerd-Jörg Rauch; Herwig Baier; Frauke van Bebber; Linda Broβ; Marcus P.S. Dekens; Karin Finger; Cornelia Fricke; Michael A. Gates; Horst Geiger; Silke Geiger-Rudolph; Darren Gilmour; Stefanie Glaser; Lara Gnügge; Hinrich Alexander Habeck; Katy Hingst; Scott A. Holley; Jeremy Keenan; Anette Kirn; Holger Knaut; Deval Lashkari; Florian Maderspacher; Ulrike Martyn; Stephan C.F. Neuhauss; Carl J. Neumann; Teresa Nicolson; Francisco Pelegri; Russell S. Ray; Jens M. Rick; Henry Roehl
Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.
Science | 2011
Russell S. Ray; Andrea E. Corcoran; Rachael D. Brust; Jun Chul Kim; George B. Richerson; Eugene E. Nattie; Susan M. Dymecki
Inducible neuron inhibition reveals essential roles for serotonergic neurons in respiratory and body temperature homeostasis. Physiological homeostasis is essential for organism survival. Highly responsive neuronal networks are involved, but their constituent neurons are just beginning to be resolved. To query brain serotonergic neurons in homeostasis, we used a neuronal silencing tool, mouse RC::FPDi (based on the synthetic G protein–coupled receptor Di), designed for cell type–specific, ligand-inducible, and reversible suppression of action potential firing. In mice harboring Di-expressing serotonergic neurons, administration of the ligand clozapine-N-oxide (CNO) by systemic injection attenuated the chemoreflex that normally increases respiration in response to tissue carbon dioxide (CO2) elevation and acidosis. At the cellular level, CNO suppressed firing rate increases evoked by CO2 acidosis. Body thermoregulation at room temperature was also disrupted after CNO triggering of Di; core temperatures plummeted, then recovered. This work establishes that serotonergic neurons regulate life-sustaining respiratory and thermoregulatory networks, and demonstrates a noninvasive tool for mapping neuron function.
Cell | 2012
Dong Geon Kong; Qingchun Tong; Chianping Ye; Shuichi Koda; Patrick M. Fuller; Michael J. Krashes; Linh Vong; Russell S. Ray; David P. Olson; Bradford B. Lowell
Neural regulation of energy expenditure is incompletely understood. By genetically disrupting GABAergic transmission in a cell-specific fashion, and by combining this with selective pharmacogenetic activation and optogenetic mapping techniques, we have uncovered an arcuate-based circuit that selectively drives energy expenditure. Specifically, mice lacking synaptic GABA release from RIP-Cre neurons have reduced energy expenditure, become obese and are extremely sensitive to high-fat diet-induced obesity, the latter due to defective diet-induced thermogenesis. Leptins ability to stimulate thermogenesis, but not to reduce feeding, is markedly attenuated. Acute, selective activation of arcuate GABAergic RIP-Cre neurons, which monosynaptically innervate PVH neurons projecting to the NTS, rapidly stimulates brown fat and increases energy expenditure but does not affect feeding. Importantly, this response is dependent upon GABA release from RIP-Cre neurons. Thus, GABAergic RIP-Cre neurons in the arcuate selectively drive energy expenditure, contribute to leptins stimulatory effect on thermogenesis, and protect against diet-induced obesity.
Developmental Dynamics | 2001
Jeong-Soo Lee; Russell S. Ray; Chi-Bin Chien
We report the cloning and expression patterns of three novel zebrafish Roundabout homologs. The Roundabout (robo) gene encodes a transmembrane receptor that is essential for axon guidance in Drosophila and Robo family members have been implicated in cell migration. Analysis of extracellular domains and conserved cytoplasmic motifs shows that zebrafish Robo1 and Robo2 are orthologs of mammalian Robo1 and Robo2, respectively, while zebrafish Robo3 is likely to be an ortholog of mouse Rig‐1. The three zebrafish robos are expressed in distinct but overlapping patterns during embryogenesis. They are highly expressed in the developing nervous system, including the olfactory system, visual system, hindbrain, cranial ganglia, spinal cord, and posterior lateral line primordium. They are also expressed in several nonneuronal tissues, including somites and fin buds. The timing and patterns of expression suggest roles for zebrafish robos in axon guidance and cell migration. Wiley‐Liss, Inc.
Methods in Enzymology | 2010
Susan M. Dymecki; Russell S. Ray; Jun C. Kim
Cell types are typically defined by expression of a unique combination of genes, rather than a single gene. Intersectional methods therefore become crucial to selectively access these cells for higher resolution fate mapping and functional manipulations. Here, we discuss one such intersectional method. Two recombinase systems (Cre/loxP and Flp/FRT) work together to remove a double STOP cassette and thereby activate expression of a target transgene solely in cells defined by a particular pairwise combination of driver genes. Depending on the nature of the target transgene, this strategy can be used to deliver cell-lineage tracers, sensors, and/or effector molecules to highly selective cell types in vivo. In this chapter, we discuss concepts, reagents, and methods underlying this intersectional approach and encourage consideration of various intersectional and binary methods for accessing uniquely defined cell subsets in the mouse.
BMC Genomics | 2007
Robert Geisler; Gerd Jörg Rauch; Silke Geiger-Rudolph; Andrea N. Albrecht; Frauke van Bebber; Andrea Berger; Elisabeth M. Busch-Nentwich; Ralf Dahm; Marcus P.S. Dekens; Christopher M. Dooley; Alexandra F. Elli; Ines Gehring; Horst Geiger; Maria Geisler; Stefanie Glaser; Scott A. Holley; Matthias Huber; Andy Kerr; Anette Kirn; Martina Knirsch; Martina Konantz; Axel M. Küchler; Florian Maderspacher; Stephan C. F. Neuhauss; Teresa Nicolson; Elke A. Ober; Elke Praeg; Russell S. Ray; Brit Rentzsch; Jens M. Rick
BackgroundLarge-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers.ResultsWe have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM.ConclusionBy obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.
Cell Reports | 2015
Anne Teissier; Alexei Chemiakine; Benjamin P. Inbar; Sneha Bagchi; Russell S. Ray; Richard D. Palmiter; Susan M. Dymecki; Holly Moore; Mark S. Ansorge
Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.
Current Opinion in Cell Biology | 2009
Russell S. Ray; Susan M. Dymecki
The rhombic lip (aka rautenlippe) is a germinative neuroepithelium rimming the opening of the hindbrain fourth ventricle during development. Studies spanning more than a century have shown that the rhombic lip produces numerous brainstem neuronal populations unique in their development and functions. While these studies have largely been anatomical in nature, recent applications of newer techniques such as genetic fate mapping and conditional mutagenesis have resolved the rhombic lip into numerous molecularly distinct progenitor domains along spatial and temporal axes that give rise to specific neuron subtypes and systems. This exciting convergence between anatomical and molecular definitions of the rhombic lip and its constituent progenitor populations provides now an important framework for further studies into the genetic basis of development and function of numerous hindbrain neuron types crucial to life.
Evolution & Development | 2008
Russell S. Ray; Mario R. Capecchi
SUMMARY Duplications of Hox gene clusters have been suggested as a mechanism whereby new Hox functions can be developed while preserving critical ancestral roles. However, in tetrapods, particularly in mammals, there is great variability in limb structure morphologies that are known to be affected by Hox genes without further Hox cluster duplications. The lack of further duplications suggests that if Hox genes have played a direct role in the morphological elaboration of tetrapod limbs, the changes must have come about from Hox protein sequence changes or from changes regarding the amount, time, and place of Hox gene expression. To investigate whether such changes to Hox genes could play a role in limb elaboration, we examined the HoxD locus in bats, which have both highly elaborated fore‐ and hindlimbs. We found that while the Chiropteran HoxD13 protein was highly conserved, there was an expansion of HoxD13 expression in the posterior portion of the Chiropteran forelimb and into the leading edge of the wing membrane. We were also able to uncover a number of unique lineage‐specific sequence changes to a known HoxD limb enhancer, the Global Control Region (GCR). Further, mouse transgenic assays showed that the Chiropteran GCR has new limb enhancer activity domains beyond that reported for the Human GCR. These results suggest that modulation of Hox gene expression may be a mechanism for effecting morphological change in lineage‐specific manner while maintaining ancestral constraints and cluster integrity.
Brain Research | 2013
Russell S. Ray; Andrea E. Corcoran; Rachael D. Brust; Laura P. Soriano; Eugene E. Nattie; Susan M. Dymecki
`The early growth response 2 transcription factor, Egr2, establishes a population of brainstem neurons essential for normal breathing at birth. Egr2-null mice die perinatally of respiratory insufficiency characterized by subnormal respiratory rate and severe apneas. Here we bypass this lethality using a noninvasive pharmacogenetic approach to inducibly perturb neuron activity postnatally, and ask if Egr2-neurons control respiration in adult mice. We found that the normal ventilatory increase in response to elevated tissue CO₂ was impaired, blunted by 63.1 ± 8.7% after neuron perturbation due to deficits in both respiratory amplitude and frequency. By contrast, room-air breathing was unaffected, suggesting that the drive for baseline breathing may not require those Egr2-neurons manipulated here. Of the multiple brainstem sites proposed to affect ventilation in response to hypercapnia, only the retrotrapezoid nucleus, a portion of the serotonergic raphé, and a portion of the A5 nucleus have a history of Egr2 expression. We recently showed that acute inhibition of serotonergic neurons en masse blunts the CO₂ chemoreflex in adults, causing a difference in hypercapnic response of ∼50% after neuron perturbation through effects on respiratory amplitude only. The suppressed respiratory frequency upon perturbation of Egr2-neurons thus may stem from non-serotonergic neurons within the Egr2 domain. Perturbation of Egr2-neurons did not affect body temperature, even on exposure to ambient 4°C. These findings support a model in which Egr2-neurons are a critical component of the respiratory chemoreflex into adulthood. Methodologically, these results highlight how pharmacogenetic approaches allow neuron function to be queried in unanesthetized adult animals, reaching beyond the roadblocks of developmental lethality and compensation as well as the anatomical disturbances associated with invasive methods. This article is part of a Special Issue entitled Optogenetics (7th BRES).