Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell S. Thomas is active.

Publication


Featured researches published by Russell S. Thomas.


Toxicological Sciences | 2012

Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

Barbara A. Wetmore; John F. Wambaugh; Stephen S. Ferguson; Mark A. Sochaski; Daniel M. Rotroff; Kimberly Freeman; Harvey J. Clewell; David J. Dix; Melvin E. Andersen; Keith A. Houck; Brittany Allen; Richard S. Judson; Reetu R. Singh; Robert J. Kavlock; Ann M. Richard; Russell S. Thomas

High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, clearance, and exposure. Hepatic metabolic clearance and plasma protein binding were experimentally measured for 239 ToxCast Phase I chemicals. The experimental data were used in a population-based in vitro-to-in vivo extrapolation model to estimate the daily human oral dose, called the oral equivalent dose, necessary to produce steady-state in vivo blood concentrations equivalent to in vitro AC(50) (concentration at 50% of maximum activity) or lowest effective concentration values across more than 500 in vitro assays. The estimated steady-state oral equivalent doses associated with the in vitro assays were compared with chronic aggregate human oral exposure estimates to assess whether in vitro bioactivity would be expected at the dose-equivalent level of human exposure. A total of 18 (9.9%) chemicals for which human oral exposure estimates were available had oral equivalent doses at levels equal to or less than the highest estimated U.S. population exposures. Ranking the chemicals by nominal assay concentrations would have resulted in different chemicals being prioritized. The in vitro assay endpoints with oral equivalent doses lower than the human exposure estimates included cell growth kinetics, cytokine and cytochrome P450 expression, and cytochrome P450 inhibition. The incorporation of dosimetry and exposure provide necessary context for interpretation of in vitro toxicity screening data and are important considerations in determining chemical testing priorities.


Toxicological Sciences | 2010

Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening

Daniel M. Rotroff; Barbara A. Wetmore; David J. Dix; Stephen S. Ferguson; Harvey J. Clewell; Keith A. Houck; Edward L. LeCluyse; Melvin E. Andersen; Richard S. Judson; Cornelia M. Smith; Mark A. Sochaski; Robert J. Kavlock; Frank Boellmann; Matthew T. Martin; David M. Reif; John F. Wambaugh; Russell S. Thomas

Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multiple cellular pathways. In this study, metabolic clearance and plasma protein binding were experimentally measured for 35 ToxCast phase I chemicals. The experimental data were used to parameterize a population-based in vitro-to-in vivo extrapolation model for estimating the human oral equivalent dose necessary to produce a steady-state in vivo concentration equivalent to in vitro AC(50) (concentration at 50% of maximum activity) and LEC (lowest effective concentration) values from the ToxCast data. For 23 of the 35 chemicals, the range of oral equivalent doses for up to 398 ToxCast assays was compared with chronic aggregate human oral exposure estimates in order to assess whether significant in vitro bioactivity occurred within the range of maximum expected human oral exposure. Only 2 of the 35 chemicals, triclosan and pyrithiobac-sodium, had overlapping oral equivalent doses and estimated human oral exposures. Ranking by the potencies of the AC(50) and LEC values, these two chemicals would not have been at the top of a prioritization list. Integrating both dosimetry and human exposure information with the high-throughput toxicity screening efforts provides a better basis for making informed decisions on chemical testing priorities and regulatory attention. Importantly, these tools are necessary to move beyond hazard rankings to estimates of possible in vivo responses based on in vitro screens.


Chemical Research in Toxicology | 2011

Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment.

Richard S. Judson; Robert J. Kavlock; R. Woodrow Setzer; Elaine A. Cohen Hubal; Matthew T. Martin; Thomas B. Knudsen; Keith A. Houck; Russell S. Thomas; Barbara A. Wetmore; David J. Dix

We describe a framework for estimating the human dose at which a chemical significantly alters a biological pathway in vivo, making use of in vitro assay data and an in vitro-derived pharmacokinetic model, coupled with estimates of population variability and uncertainty. The quantity we calculate, the biological pathway altering dose (BPAD), is analogous to current risk assessment metrics in that it combines dose-response data with analysis of uncertainty and population variability to arrive at conservative exposure limits. The analogy is closest when perturbation of a pathway is a key event in the mode of action (MOA) leading to a specified adverse outcome. Because BPADs are derived from relatively inexpensive, high-throughput screening (HTS) in vitro data, this approach can be applied to high-throughput risk assessments (HTRA) for thousands of data-poor environmental chemicals. We envisage the first step of HTRA to be an assessment of in vitro concentration-response relationships across biologically important pathways to derive biological pathway altering concentrations (BPAC). Pharmacokinetic (PK) modeling is then used to estimate the in vivo doses required to achieve the BPACs in the blood at steady state. Uncertainty and variability are incorporated in both the BPAC and the PK parameters and then combined to yield a probability distribution for the dose required to perturb the critical pathway. We finally define the BPADL as the lower confidence bound of this pathway-altering dose. This perspective outlines a framework for using HTRA to estimate BPAD values; provides examples of the use of this approach, including a comparison of BPAD values with published dose-response data from in vivo studies; and discusses challenges and alternative formulations.


Toxicological Sciences | 2013

Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework.

Russell S. Thomas; Martin A. Philbert; Scott S. Auerbach; Barbara A. Wetmore; Michael J. DeVito; Ila Cote; J. Craig Rowlands; Maurice Whelan; Sean M. Hays; Melvin E. Andersen; M. E. (Bette) Meek; Lawrence W. Reiter; Jason C. Lambert; Harvey J. Clewell; Martin L. Stephens; Q. Jay Zhao; Scott C. Wesselkamper; Lynn Flowers; Edward W. Carney; Timothy P. Pastoor; Dan D. Petersen; Carole L. Yauk; Andy Nong

Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling. The in vitro assays are used to separate chemicals based on their relative selectivity in interacting with biological targets and identify the concentration at which these interactions occur. The IVIVE modeling converts in vitro concentrations into external dose for calculation of the point of departure (POD) and comparisons to human exposure estimates to yield a MOE. The second tier involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human exposure estimates. The results from the second tier studies provide more accurate estimates of the POD and the MOE. The third tier contains the traditional animal studies currently used to assess chemical safety. In each tier, the POD for selective chemicals is based primarily on endpoints associated with a proposed mode of action, whereas the POD for nonselective chemicals is based on potential biological perturbation. Based on the MOE, a significant percentage of chemicals evaluated in the first 2 tiers could be eliminated from further testing. The framework provides a risk-based and animal-sparing approach to evaluate chemical safety, drawing broadly from previous experience but incorporating technological advances to increase efficiency.


Molecular BioSystems | 2006

Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival

Todd J. Page; Devanjan Sikder; Longlong Yang; Linda Pluta; Russell D. Wolfinger; Thomas Kodadek; Russell S. Thomas

Although HSF1 plays an important role in the cellular response to proteotoxic stressors, little is known about the structure and function of the human HSF1 signaling network under both stressed and unstressed conditions. In this study, we used a combination of chromatin immunoprecipitation microarray analysis and time course gene expression microarray analysis with and without siRNA-mediated inhibition of HSF1 to comprehensively identify genes regulated directly and indirectly by HSF1. The correlation between promoter binding and gene expression was not significant for all genes bound by HSF1, suggesting that HSF1 binding per se is not sufficient for expression. However, the correlation with promoter binding was significant for genes identified as HSF1-regulated following siRNA knockdown. Among promoters bound by HSF1 following heat shock, a gene ontology analysis showed significant enrichment only in categories related to protein folding. In contrast, analysis of the extended HSF1 signaling network following siRNA knockdown showed enrichment in a variety of categories related to protein folding, anti-apoptosis, RNA splicing, ubiquitinylation and others, highlighting a complex transcriptional program regulated directly and indirectly by HSF1.


BMC Genomics | 2007

BMDExpress: a software tool for the benchmark dose analyses of genomic data

Longlong Yang; Bruce C. Allen; Russell S. Thomas

BackgroundDose-dependent processes are common within biological systems and include phenotypic changes following exposures to both endogenous and xenobiotic molecules. The use of microarray technology to explore the molecular signals that underlie these dose-dependent processes has become increasingly common; however, the number of software tools for quantitatively analyzing and interpreting dose-response microarray data has been limited.ResultsWe have developed BMDExpress, a Java application that combines traditional benchmark dose methods with gene ontology classification in the analysis of dose-response data from microarray experiments. The software application is designed to perform a stepwise analysis beginning with a one-way analysis of variance to identify the subset of genes that demonstrate significant dose-response behavior. The second step of the analysis involves fitting the gene expression data to a selection of standard statistical models (linear, 2° polynomial, 3° polynomial, and power models) and selecting the model that best describes the data with the least amount of complexity. The model is then used to estimate the benchmark dose at which the expression of the gene significantly deviates from that observed in control animals. Finally, the software application summarizes the statistical modeling results by matching each gene to its corresponding gene ontology categories and calculating summary values that characterize the dose-dependent behavior for each biological process and molecular function. As a result, the summary values represent the dose levels at which genes in the corresponding cellular process show transcriptional changes.ConclusionThe application of microarray technology together with the BMDExpress software tool represents a useful combination in characterizing dose-dependent transcriptional changes in biological systems. The software allows users to efficiently analyze large dose-response microarray studies and identify reference doses at which particular cellular processes are altered. The software is freely available at http://sourceforge.net/projects/bmdexpress/ and is distributed under the MIT Public License.


Molecular Pharmacology | 2010

Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4.

Melissa A. Barhoover; Julie M. Hall; William F. Greenlee; Russell S. Thomas

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with constitutive activities and those induced by xenobiotic ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). One unexplained cellular role for the AHR is its ability to promote cell cycle progression in the absence of exogenous ligands, whereas treatment with exogenous ligands induces cell cycle arrest. Within the cell cycle, progression from G1 to S phase is controlled by sequential phosphorylation of the retinoblastoma protein (RB1) by cyclin D–cyclin-dependent kinase (CDK) 4/6 complexes. In this study, the functional interactions between the AHR, CDK4, and cyclin D1 (CCND1) were investigated as a potential mechanism for the cell cycle regulation by the AHR. Time course cell cycle and molecular experiments were performed in human breast cancer cells. The results demonstrated that the AHR and CDK4 interact within the cell cycle, and the interaction was disrupted upon TCDD treatment. The disruption was temporally correlated with G1 cell cycle arrest and decreased phosphorylation of RB1. Biochemical reconstitution assays using in vitro-translated protein recapitulated the AHR and CDK4 interaction and showed that CCND1 was also part of the complex. In vitro assays for CDK4 kinase activity demonstrated that RB1 phosphorylation by the AHR/CDK4/CCND1 complex was reduced in the presence of TCDD. The results suggest that the AHR interacts in a complex with CDK4 and CCND1 in the absence of exogenous ligands to facilitate cell cycle progression. This interaction is disrupted by exogenous ligands, such as TCDD, to induce G1 cell cycle arrest.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Genome-scale functional profiling of the mammalian AP-1 signaling pathway

Sumit K. Chanda; Suhaila White; Anthony P. Orth; Richard Reisdorph; Loren Miraglia; Russell S. Thomas; Paul DeJesus; Daniel E. Mason; Qihong Huang; Raquel G. Vega; De-Hua Yu; Christian G. Nelson; Brendan M. Smith; Robert D. Terry; Alicia S. Linford; Yang Yu; Gung-Wei Chirn; Chuanzheng Song; Mark Labow; Dalia Cohen; Frederick J. King; Eric C. Peters; Peter G. Schultz; Peter K. Vogt; John B. Hogenesch; Jeremy S. Caldwell

Large-scale functional genomics approaches are fundamental to the characterization of mammalian transcriptomes annotated by genome sequencing projects. Although current high-throughput strategies systematically survey either transcriptional or biochemical networks, analogous genome-scale investigations that analyze gene function in mammalian cells have yet to be fully realized. Through transient overexpression analysis, we describe the parallel interrogation of ≈20,000 sequence annotated genes in cancer-related signaling pathways. For experimental validation of these genome data, we apply an integrative strategy to characterize previously unreported effectors of activator protein-1 (AP-1) mediated growth and mitogenic response pathways. These studies identify the ADP-ribosylation factor GTPase-activating protein Centaurin α1 and a Tudor domain-containing hypothetical protein as putative AP-1 regulatory oncogenes. These results provide insight into the composition of the AP-1 signaling machinery and validate this approach as a tractable platform for genome-wide functional analysis.


Toxicological Sciences | 2012

A Comprehensive Statistical Analysis of Predicting In Vivo Hazard Using High-Throughput In Vitro Screening

Russell S. Thomas; Michael B. Black; Lili Li; Eric Healy; Tzu-Ming Chu; Wenjun Bao; Melvin E. Andersen; Russell D. Wolfinger

Over the past 5 years, increased attention has been focused on using high-throughput in vitro screening for identifying chemical hazards and prioritizing chemicals for additional in vivo testing. The U.S. Environmental Protection Agencys ToxCast program has generated a significant amount of high-throughput screening data allowing a broad-based assessment of the utility of these assays for predicting in vivo responses. In this study, a comprehensive cross-validation model comparison was performed to evaluate the predictive performance of the more than 600 in vitro assays from the ToxCast phase I screening effort across 60 in vivo endpoints using 84 different statistical classification methods. The predictive performance of the in vitro assays was compared and combined with that from chemical structure descriptors. With the exception of chronic in vivo cholinesterase inhibition, the overall predictive power of both the in vitro assays and the chemical descriptors was relatively low. The predictive power of the in vitro assays was not significantly different from that of the chemical descriptors and aggregating the assays based on genes reduced predictive performance. Prefiltering the in vitro assay data outside the cross-validation loop, as done in some previous studies, significantly biased estimates of model performance. The results suggest that the current ToxCast phase I assays and chemicals have limited applicability for predicting in vivo chemical hazards using standard statistical classification methods. However, if viewed as a survey of potential molecular initiating events and interpreted as risk factors for toxicity, the assays may still be useful for chemical prioritization.


Toxicological Sciences | 2011

Application of transcriptional benchmark dose values in quantitative cancer and noncancer risk assessment.

Russell S. Thomas; Harvey J. Clewell; Bruce C. Allen; Scott C. Wesselkamper; Nina Ching Y. Wang; Jason C. Lambert; Janet K. Hess-Wilson; Q. Jay Zhao; Melvin E. Andersen

The traditional approach for estimating noncancer and cancer reference values in quantitative chemical risk assessment is time and resource intensive. The extent and nature of the studies required under the traditional approach has limited the number of chemicals with published risk assessments. In this study, female mice were exposed for 13 weeks to multiple concentrations of five chemicals that were positive in a 2-year cancer bioassay. Traditional histological and organ weight changes were evaluated, and gene expression microarray analysis was performed on the target tissues. The histological, organ weight changes, and the original tumor incidences in the original cancer bioassay were analyzed using standard benchmark dose (BMD) methods to identify noncancer and cancer points of departure, respectively. The dose-related changes in gene expression were also analyzed using a BMD approach and the responses grouped based on cellular biological processes. A comparison of the transcriptional BMD values with those for the traditional noncancer and cancer apical endpoints showed a high degree of correlation for specific cellular biological processes. For chemicals with human exposure data, the transcriptional BMD values were also used to calculate a margin of exposure. The margins of exposure ranged from 1900 to 54,000. Both the correlation between the BMD values for the transcriptional and apical endpoints and the margin of exposure analysis suggest that transcriptional BMD values may be used as potential points of departure for noncancer and cancer risk assessment.

Collaboration


Dive into the Russell S. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard S. Judson

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith A. Houck

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Linda Pluta

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. Wambaugh

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge