Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell Schwartz is active.

Publication


Featured researches published by Russell Schwartz.


Biophysical Journal | 1998

Local rules simulation of the kinetics of virus capsid self-assembly.

Russell Schwartz; Peter W. Shor; Peter E. Prevelige; Bonnie Berger

A computer model is described for studying the kinetics of the self-assembly of icosahedral viral capsids. Solution of this problem is crucial to an understanding of the viral life cycle, which currently cannot be adequately addressed through laboratory techniques. The abstract simulation model employed to address this is based on the local rules theory of. Proc. Natl. Acad. Sci. USA. 91:7732-7736). It is shown that the principle of local rules, generalized with a model of kinetics and other extensions, can be used to simulate complicated problems in self-assembly. This approach allows for a computationally tractable molecular dynamics-like simulation of coat protein interactions while retaining many relevant features of capsid self-assembly. Three simple simulation experiments are presented to illustrate the use of this model. These show the dependence of growth and malformation rates on the energetics of binding interactions, the tolerance of errors in binding positions, and the concentration of subunits in the examples. These experiments demonstrate a tradeoff within the model between growth rate and fidelity of assembly for the three parameters. A detailed discussion of the computational model is also provided.


Nature Nanotechnology | 2013

Molecular crowding shapes gene expression in synthetic cellular nanosystems

Cheemeng Tan; Saumya Saurabh; Marcel P. Bruchez; Russell Schwartz; Philip R. LeDuc

Summary The integration of synthetic and cell-free biology has made tremendous strides towards creating artificial cellular nanosystems using concepts from solution-based chemistry: only the concentrations of reacting species modulate gene expression rates. However, it is known that macromolecular crowding, a key feature of natural cells, can dramatically influence biochemical kinetics by volume exclusion effects that reduce diffusion rates and enhance binding rates of macromolecules. Here, we demonstrate that macromolecular crowding can increase the robustness of gene expression through integrating synthetic cellular components of biological circuits and artificial cellular nanosystems. In addition, we reveal how ubiquitous cellular modules, including genetic components, a negative feedback loop, and the size of crowding molecules, can fine tune gene circuit response to molecular crowding. By bridging a key gap between artificial and living cells, our work has implications for efficient and robust control of both synthetic and natural cellular circuits.


research in computational molecular biology | 2003

Haplotypes and informative SNP selection algorithms: don't block out information

Vineet Bafna; Bjarni V. Halldórsson; Russell Schwartz; Andrew G. Clark; Sorin Istrail

It is widely hoped that variation in the human genome will provide a means of predicting risk of a variety of complex, chronic diseases. A major stumbling block to the successful identification of association between human DNA polymorphisms (SNPs) and variability in risk of complex diseases is the enormous number of SNPs in the human genome (4,9). The large number of SNPs results in unacceptably high costs for exhaustive genotyping, and so there is a broad effort to determine ways to select SNPs so as to maximize the informativeness of a subset.In this paper we contrast two methods for reducing the complexity of SNP variation: haplotype tagging, i.e. typing a subset of SNPs to identify segments of the genome that appear to be nearly unrecombined (haplotype blocks), and a new block-free model that we develop in this report. We present a statistic for comparing haplotype blocks and show that while the concept of haplotype blocks is reasonably robust there is substantial variability among block partitions. We develop a measure for selecting an informative subset of SNPs in a block free model. We show that the general version of this problem is NP-hard and give efficient algorithms for two important special cases of this problem.


Protein Science | 2001

Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues.

Russell Schwartz; Sorin Istrail; Jonathan King

Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20–22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition between on‐pathway folding and off‐pathway aggregate formation, we found that long sequences of consecutive hydrophobic residues promoted aggregation within the model, even controlling for overall hydrophobic content. We report here on an analysis of the frequencies of different lengths of contiguous blocks of hydrophobic residues in a database of amino acid sequences of proteins of known structure. Sequences of three or more consecutive hydrophobic residues are found to be significantly less common in actual globular proteins than would be predicted if residues were selected independently. The result may reflect selection against long blocks of hydrophobic residues within globular proteins relative to what would be expected if residue hydrophobicities were independent of those of nearby residues in the sequence.


American Journal of Pathology | 2012

Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression.

Kerstin Heselmeyer-Haddad; Lissa Y. Berroa Garcia; Amanda Bradley; Clarymar Ortiz-Melendez; Woei-Jyh Lee; Rebecca Christensen; Sheila A. Prindiville; Kathleen A. Calzone; Peter W. Soballe; Yue Hu; Salim A. Chowdhury; Russell Schwartz; Alejandro A. Schäffer; Thomas Ried

Ductal carcinoma in situ (DCIS) is a precursor lesion of invasive ductal carcinoma (IDC) of the breast. To understand the dynamics of genomic alterations in this progression, we used four multicolor fluorescence in situ hybridization probe panels consisting of the oncogenes COX2, MYC, HER2, CCND1, and ZNF217 and the tumor suppressor genes DBC2, CDH1, and TP53 to visualize copy number changes in 13 cases of synchronous DCIS and IDC based on single-cell analyses. The DCIS had a lower degree of chromosomal instability than the IDC. Despite enormous intercellular heterogeneity in DCIS and IDC, we observed signal patterns consistent with a nonrandom distribution of genomic imbalances. CDH1 was most commonly lost, and gain of MYC emerged during progression from DCIS to IDC. Four of 13 DCISs showed identical clonal imbalances in the IDCs. Six cases revealed a switch, and in four of those, the IDC had acquired a gain of MYC. In one case, the major clone in the IDC was one of several clones in the DCIS, and in another case, the major clone in the DCIS became one of the two major clones in the IDC. Despite considerable chromosomal instability, in most cases the evolution from DCIS to IDC is determined by recurrent patterns of genomic imbalances, consistent with a biological continuum.


Journal of Computational Biology | 2003

Robustness of inference of haplotype block structure.

Russell Schwartz; Bjarni V. Halldórsson; Vineet Bafna; Andrew G. Clark; Sorin Istrail

In this report, we examine the validity of the haplotype block concept by comparing block decompositions derived from public data sets by variants of several leading methods of block detection. We first develop a statistical method for assessing the concordance of two block decompositions. We then assess the robustness of inferred haplotype blocks to the specific detection method chosen, to arbitrary choices made in the block-detection algorithms, and to the sample analyzed. Although the block decompositions show levels of concordance that are very unlikely by chance, the absolute magnitude of the concordance may be low enough to limit the utility of the inference. For purposes of SNP selection, it seems likely that methods that do not arbitrarily impose block boundaries among correlated SNPs might perform better than block-based methods.


PLOS Computational Biology | 2014

Bioinformatics Curriculum Guidelines: Toward a Definition of Core Competencies

Lonnie R. Welch; Fran Lewitter; Russell Schwartz; Catherine Brooksbank; Predrag Radivojac; Bruno A. Gaëta; Maria Victoria Schneider

Rapid advances in the life sciences and in related information technologies necessitate the ongoing refinement of bioinformatics educational programs in order to maintain their relevance. As the discipline of bioinformatics and computational biology expands and matures, it is important to characterize the elements that contribute to the success of professionals in this field. These individuals work in a wide variety of settings, including bioinformatics core facilities, biological and medical research laboratories, software development organizations, pharmaceutical and instrument development companies, and institutions that provide education, service, and training. In response to this need, the Curriculum Task Force of the International Society for Computational Biology (ISCB) Education Committee seeks to define curricular guidelines for those who train and educate bioinformaticians. The previous report of the task force summarized a survey that was conducted to gather input regarding the skill set needed by bioinformaticians [1]. The current article details a subsequent effort, wherein the task force broadened its perspectives by examining bioinformatics career opportunities, surveying directors of bioinformatics core facilities, and reviewing bioinformatics education programs. The bioinformatics literature provides valuable perspectives on bioinformatics education by defining skill sets needed by bioinformaticians, presenting approaches for providing informatics training to biologists, and discussing the roles of bioinformatics core facilities in training and education. The skill sets required for success in the field of bioinformatics are considered by several authors: Altman [2] defines five broad areas of competency and lists key technologies; Ranganathan [3] presents highlights from the Workshops on Education in Bioinformatics, discussing challenges and possible solutions; Yales interdepartmental PhD program in computational biology and bioinformatics is described in [4], which lists the general areas of knowledge of bioinformatics; in a related article, a graduate of Yales PhD program reflects on the skills needed by a bioinformatician [5]; Altman and Klein [6] describe the Stanford Biomedical Informatics (BMI) Training Program, presenting observed trends among BMI students; the American Medical Informatics Association defines competencies in the related field of biomedical informatics in [7]; and the approaches used in several German universities to implement bioinformatics education are described in [8]. Several approaches to providing bioinformatics training for biologists are described in the literature. Tan et al. [9] report on workshops conducted to identify a minimum skill set for biologists to be able to address the informatics challenges of the “-omics” era. They define a requisite skill set by analyzing responses to questions about the knowledge, skills, and abilities that biologists should possess. The authors in [10] present examples of strategies and methods for incorporating bioinformatics content into undergraduate life sciences curricula. Pevzner and Shamir [11] propose that undergraduate biology curricula should contain an additional course, “Algorithmic, Mathematical, and Statistical Concepts in Biology.” Wingren and Botstein [12] present a graduate course in quantitative biology that is based on original, pathbreaking papers in diverse areas of biology. Johnson and Friedman [13] evaluate the effectiveness of incorporating biological informatics into a clinical informatics program. The results reported are based on interviews of four students and informal assessments of bioinformatics faculty. The challenges and opportunities relevant to training and education in the context of bioinformatics core facilities are discussed by Lewitter et al. [14]. Relatedly, Lewitter and Rebhan [15] provide guidance regarding the role of a bioinformatics core facility in hiring biologists and in furthering their education in bioinformatics. Richter and Sexton [16] describe a need for highly trained bioinformaticians in core facilities and provide a list of requisite skills. Similarly, Kallioniemi et al. [17] highlight the roles of bioinformatics core units in education and training. This manuscript expands the body of knowledge pertaining to bioinformatics curriculum guidelines by presenting the results from a broad set of surveys (of core facility directors, of career opportunities, and of existing curricula). Although there is some overlap in the findings of the surveys, they are reported separately, in order to avoid masking the unique aspects of each of the perspectives and to demonstrate that the same themes arise, even when different perspectives are considered. The authors derive from their surveys an initial set of core competencies and relate the competencies to three different categories of professions that have a need for bioinformatics training.


Journal of Computational Biology | 1999

Lattice simulations of aggregation funnels for protein folding.

Sorin Istrail; Russell Schwartz; Jonathan King

A computer model of protein aggregation competing with productive folding is proposed. Our model adapts techniques from lattice Monte Carlo studies of protein folding to the problem of aggregation. However, rather than starting with a single string of residues, we allow independently folding strings to undergo collisions and consider their interactions in different orientations. We first present some background into the nature and significance of protein aggregation and the use of lattice Monte Carlo simulations in understanding other aspects of protein folding. The results of a series of simulation experiments involving simple versions of the model illustrate the importance of considering aggregation in simulations of protein folding and provide some preliminary understanding of the characteristics of the model. Finally, we discuss the value of the model in general and of our particular design decisions and experiments. We conclude that computer simulation techniques developed to study protein folding can provide insights into protein aggregation, and that a better understanding of aggregation may in turn provide new insights into and constraints on the more general protein folding problem.


Bioinformatics | 2013

Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations.

Salim A. Chowdhury; Stanley E. Shackney; Kerstin Heselmeyer-Haddad; Thomas Ried; Alejandro A. Schäffer; Russell Schwartz

Motivation: Development and progression of solid tumors can be attributed to a process of mutations, which typically includes changes in the number of copies of genes or genomic regions. Although comparisons of cells within single tumors show extensive heterogeneity, recurring features of their evolutionary process may be discerned by comparing multiple regions or cells of a tumor. A useful source of data for studying likely progression of individual tumors is fluorescence in situ hybridization (FISH), which allows one to count copy numbers of several genes in hundreds of single cells. Novel algorithms for interpreting such data phylogenetically are needed, however, to reconstruct likely evolutionary trajectories from states of single cells and facilitate analysis of tumor evolution. Results: In this article, we develop phylogenetic methods to infer likely models of tumor progression using FISH copy number data and apply them to a study of FISH data from two cancer types. Statistical analyses of topological characteristics of the tree-based model provide insights into likely tumor progression pathways consistent with the prior literature. Furthermore, tree statistics from the resulting phylogenies can be used as features for prediction methods. This results in improved accuracy, relative to unstructured gene copy number data, at predicting tumor state and future metastasis. Availability: Source code for software that does FISH tree building (FISHtrees) and the data on cervical and breast cancer examined here are available at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Bioinformatics | 2010

Robust unmixing of tumor states in array comparative genomic hybridization data

David Tolliver; Charalampos E. Tsourakakis; Ayshwarya Subramanian; Stanley E. Shackney; Russell Schwartz

Motivation: Tumorigenesis is an evolutionary process by which tumor cells acquire sequences of mutations leading to increased growth, invasiveness and eventually metastasis. It is hoped that by identifying the common patterns of mutations underlying major cancer sub-types, we can better understand the molecular basis of tumor development and identify new diagnostics and therapeutic targets. This goal has motivated several attempts to apply evolutionary tree reconstruction methods to assays of tumor state. Inference of tumor evolution is in principle aided by the fact that tumors are heterogeneous, retaining remnant populations of different stages along their development along with contaminating healthy cell populations. In practice, though, this heterogeneity complicates interpretation of tumor data because distinct cell types are conflated by common methods for assaying the tumor state. We previously proposed a method to computationally infer cell populations from measures of tumor-wide gene expression through a geometric interpretation of mixture type separation, but this approach deals poorly with noisy and outlier data. Results: In the present work, we propose a new method to perform tumor mixture separation efficiently and robustly to an experimental error. The method builds on the prior geometric approach but uses a novel objective function allowing for robust fits that greatly reduces the sensitivity to noise and outliers. We further develop an efficient gradient optimization method to optimize this ‘soft geometric unmixing’ objective for measurements of tumor DNA copy numbers assessed by array comparative genomic hybridization (aCGH) data. We show, on a combination of semi-synthetic and real data, that the method yields fast and accurate separation of tumor states. Conclusions: We have shown a novel objective function and optimization method for the robust separation of tumor sub-types from aCGH data and have shown that the method provides fast, accurate reconstruction of tumor states from mixed samples. Better solutions to this problem can be expected to improve our ability to accurately identify genetic abnormalities in primary tumor samples and to infer patterns of tumor evolution. Contact: [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Russell Schwartz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip R. LeDuc

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy E. Blelloch

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Ravi

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Thomas Ried

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lu Xie

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge