Russell Thompson
Cognition and Brain Sciences Unit
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Russell Thompson.
The Journal of Neuroscience | 2009
Mark G. Stokes; Russell Thompson; Rhodri Cusack; John S. Duncan
Visual imagery is mediated via top-down activation of visual cortex. Similar to stimulus-driven perception, the neural configurations associated with visual imagery are differentiated according to content. For example, imagining faces or places differentially activates visual areas associated with perception of actual face or place stimuli. However, while top-down activation of topographically specific visual areas during visual imagery is well established, the extent to which internally generated visual activity resembles the fine-scale population coding responsible for stimulus-driven perception remains unknown. Here, we sought to determine whether top-down mechanisms can selectively activate perceptual representations coded across spatially overlapping neural populations. We explored the precision of top-down activation of perceptual representations using neural pattern classification to identify activation patterns associated with imagery of distinct letter stimuli. Pattern analysis of the neural population observed within high-level visual cortex, including lateral occipital complex, revealed that imagery activates the same neural representations that are activated by corresponding visual stimulation. We conclude that visual imagery is mediated via top-down activation of functionally distinct, yet spatially overlapping population codes for high-level visual representations.
Brain | 2010
María Roca; Alice Parr; Russell Thompson; Alexandra Woolgar; Teresa Torralva; Nagui M. Antoun; Facundo Manes; John S. Duncan
Many tests of specific ‘executive functions’ show deficits after frontal lobe lesions. These deficits appear on a background of reduced fluid intelligence, best measured with tests of novel problem solving. For a range of specific executive tests, we ask how far frontal deficits can be explained by a general fluid intelligence loss. For some widely used tests, e.g. Wisconsin Card Sorting, we find that fluid intelligence entirely explains frontal deficits. When patients and controls are matched on fluid intelligence, no further frontal deficit remains. For these tasks too, deficits are unrelated to lesion location within the frontal lobe. A second group of tasks, including tests of both cognitive (e.g. Hotel, Proverbs) and social (Faux Pas) function, shows a different pattern. Deficits are not fully explained by fluid intelligence and the data suggest association with lesions in the right anterior frontal cortex. Understanding of frontal lobe deficits may be clarified by separating reduced fluid intelligence, important in most or all tasks, from other more specific impairments and their associated regions of damage.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Alexandra Woolgar; Alice Parr; Rhodri Cusack; Russell Thompson; Ian Nimmo-Smith; Teresa Torralva; María Roca; Nagui M. Antoun; Facundo Manes; John S. Duncan
Tests of fluid intelligence predict success in a wide range of cognitive activities. Much uncertainty has surrounded brain lesions producing deficits in these tests, with standard group comparisons delivering no clear result. Based on findings from functional imaging, we propose that the uncertainty of lesion data may arise from the specificity and complexity of the relevant neural circuit. Fluid intelligence tests give a characteristic pattern of activity in posterolateral frontal, dorsomedial frontal, and midparietal cortex. To test the causal role of these regions, we examined fluid intelligence in 80 patients with focal cortical lesions. Damage to each of the proposed regions predicted fluid intelligence loss, whereas damage outside these regions was not predictive. The results suggest that coarse group comparisons (e.g., frontal vs. posterior) cannot show the neural underpinnings of fluid intelligence tests. Instead, deficits reflect the extent of damage to a restricted but complex brain circuit comprising specific regions within both frontal and posterior cortex.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Mark G. Stokes; Russell Thompson; Anna C. Nobre; John S. Duncan
The mechanisms of attention prioritize sensory input for efficient perceptual processing. Influential theories suggest that attentional biases are mediated via preparatory activation of task-relevant perceptual representations in visual cortex, but the neural evidence for a preparatory coding model of attention remains incomplete. In this experiment, we tested core assumptions underlying a preparatory coding model for attentional bias. Exploiting multivoxel pattern analysis of functional neuroimaging data obtained during a non-spatial attention task, we examined the locus, time-course, and functional significance of shape-specific preparatory attention in the human brain. Following an attentional cue, yet before the onset of a visual target, we observed selective activation of target-specific neural subpopulations within shape-processing visual cortex (lateral occipital complex). Target-specific modulation of baseline activity was sustained throughout the duration of the attention trial and the degree of target specificity that characterized preparatory activation patterns correlated with perceptual performance. We conclude that top-down attention selectively activates target-specific neural codes, providing a competitive bias favoring task-relevant representations over competing representations distributed within the same subregion of visual cortex.
The Journal of Neuroscience | 2011
Alexandra Woolgar; Adam Hampshire; Russell Thompson; John S. Duncan
Frontoparietal cortex is thought to be essential for flexible behavior, but the mechanism for control remains elusive. Here, we demonstrate a potentially critical property of this cortex: its dynamic configuration for coding of task-critical information. Using multivoxel pattern analysis of human functional imaging data, we demonstrate an adaptive change in the patterns of activation coding task-relevant stimulus distinctions. When task demands made perceptual information more difficult to discriminate, frontoparietal regions showed increased coding of this information. Visual cortices showed the opposite result: a weaker representation of perceptual information in line with the physical change in the stimulus. On a longer timescale, a rebalancing of coding was also seen after practice, with a diminished representation of task rules as they became familiar. The results suggest a flexible neural system, exerting cognitive control in a wide range of tasks by adaptively representing the task features most challenging for successful goal-directed behavior.
Cognitive, Affective, & Behavioral Neuroscience | 2009
Adam Hampshire; Russell Thompson; John S. Duncan; Adrian M. Owen
In the human brain, a network of frontal and parietal regions is commonly recruited during tasks that demand the deliberate, focused control of thought and action. Previously, using a simple target detection task, we reported striking differences in the selectivity of the BOLD response in anatomically distinct subregions of this network. In particular, it was observed that the right inferior frontal gyrus (IFG) followed a tightly tuned function, selectively responding only to the current target object. Here, we examine this functional specialization further, using adapted versions of our original task. Our results demonstrate that the response of the right IFG to targets is a strong and replicable phenomenon. It occurs under increased attentional load, when targets and distractors are equally frequent, and when controlling for inhibitory processes. These findings support the hypothesis that the right IFG responds selectively to those items that are of the most relevance to the currently intended task schema.
NeuroImage | 2011
Alexandra Woolgar; Russell Thompson; Daniel Bor; John S. Duncan
In human functional magnetic resonance imaging (fMRI), a characteristic pattern of frontal and parietal activity is produced by many different cognitive demands. Although frontoparietal cortex has been shown to represent a variety of task features in different contexts, little is known about detailed representation of different task features within and across different regions. We used multi-voxel pattern analysis (MVPA) of human fMRI data to assess the representational content of frontoparietal cortex in a simple stimulus-response task. Stimulus-response mapping rule was the most strongly represented task feature, significantly coded in a lateral frontal region surrounding the inferior frontal sulcus, a more ventral region including the anterior insula/frontal operculum, and the intraparietal sulcus. Next strongest was coding of the instruction cue (screen color) indicating which rule should be applied. Coding of individual stimuli and responses was weaker, approaching significance in a subset of regions. In line with recent single unit data, the results show a broad representation of task-relevant information across human frontoparietal cortex, with strong representation of a general rule or cognitive context, and weaker coding of individual stimulus/response instances.
Cerebral Cortex | 2011
Adam Hampshire; Russell Thompson; John S. Duncan; Adrian M. Owen
Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions.
Neuropsychologia | 2011
María Roca; Teresa Torralva; Ezequiel Gleichgerrcht; Alexandra Woolgar; Russell Thompson; John S. Duncan; Facundo Manes
A role for rostral prefrontal cortex (BA10) has been proposed in multitasking, in particular, the selection and maintenance of higher order internal goals while other sub-goals are being performed. BA10 has also been implicated in the ability to infer someone elses feelings and thoughts, often referred to as theory of mind. While most of the data to support these views come from functional neuroimaging studies, lesion studies are scant. In the present study, we compared the performance of a group of frontal patients whose lesions involved BA10, a group of frontal patients whose lesions did not affect this area (nonBA10), and a group of healthy controls on tests requiring multitasking and complex theory of mind judgments. Only the group with lesions involving BA10 showed deficits on multitasking and theory of mind tasks when compared with control subjects. NonBA10 patients performed more poorly than controls on an executive function screening tool, particularly on measures of response inhibition and abstract reasoning, suggesting that theory of mind and multitasking deficits following lesions to BA10 cannot be explained by a general worsening of executive function. In addition, we searched for correlations between performance and volume of damage within different subregions of BA10. Significant correlations were found between multitasking performance and volume of damage in right lateral BA10, and between theory of mind and total BA10 lesion volume. These findings stress the potential pivotal role of BA10 in higher order cognitive functions.
Psychiatric Genetics | 2004
Patrick Bolton; Marijcke W. M. Veltman; Emma Weisblatt; Joanne R. Holmes; N. Simon Thomas; Sheila Youings; Russell Thompson; Siân E. Roberts; Nicholas R. Dennis; Caroline E. Browne; Sally Goodson; Vanessa Moore; Josie Brown
Objectives The frequency of abnormalities of 15q11-q13 and other possibly causal medical disorders including karyotypic abnormalities was investigated in an unselected series of children who were referred to one of two autism assessment centres. Methods Two hundred and twenty-one cases were assessed using the Autism Diagnostic Interview and Observation Schedule and, where appropriate, standardized tests of intelligence and language abilities. Medical histories and notes were reviewed, and molecular and cytogenetic investigations used to detect chromosomal abnormalities. Results One hundred and eighty-one cases were diagnosed according to International Classification of Diseases – version 10 criteria as having an autism spectrum disorder (autistic-like Pervasive Developmental Disorder) and 40 cases as having other disorders. Twenty-one (11.6%) of the children with autism spectrum disorders had a possibly causal condition compared with six (15%) of the children with other diagnoses. One child with an autism spectrum disorder had a paternally inherited familial duplication of 15q11-13. The pattern of genotype–phenotype correlation within the family indicated that this form of abnormality might carry a risk for developmental difficulties, although the risk did not appear to be specific for autism spectrum disorders. Conclusion The overall rate of possibly causal medical and cytogenetic conditions in children with autism spectrum disorders was low and no different from the rate of disorder in children with other developmental/neuropsychiatric disorders that attended the same clinics. Further research is required to determine whether paternal duplication of 15q11-13 gives rise to adverse developmental outcomes.