Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell Williams is active.

Publication


Featured researches published by Russell Williams.


Journal of Proteome Research | 2011

Secretome Signature of Invasive Glioblastoma Multiforme

Catherine A. Formolo; Russell Williams; Heather Gordish-Dressman; Tobey J. MacDonald; Norman H. Lee; Yetrib Hathout

The incurability of malignant glioblastomas is mainly attributed to their highly invasive nature coupled with resistance to chemo- and radiation therapy. Because invasiveness is partially dictated by the proteins these tumors secrete we used SILAC to characterize the secretomes of four glioblastoma cell lines (LN18, T98, U118 and U87). Although U87 and U118 cells both secreted high levels of well-known invasion promoting proteins, a Matrigel invasion assay showed U87 cells to be eight times more invasive than U118 cells, suggesting that additional proteins secreted by U87 cells may contribute to the highly invasive phenotype. Indeed, we identified a number of proteins highly or exclusively expressed by U87 cells as compared to the less invasive cell lines. The most striking of these include ADAM9, ADAM10, cathepsin B, cathepsin L1, osteopontin, neuropilin-1, semaphorin-7A, suprabasin, and chitinase-3-like protein 1. U87 cells also expressed significantly low levels of some cell adhesion proteins such as periostin and EMILIN-1. Correlation of secretome profiles with relative levels of invasiveness using Pavlidis template matching further indicated potential roles for these proteins in U87 glioblastoma invasion. Antibody inhibition of CH3L1 reduced U87 cell invasiveness by 30%.


Cancer Biology & Therapy | 2013

Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells

Nishant Gandhi; Aaron T. Wild; Sivarajan T. Chettiar; Khaled Aziz; Yoshinori Kato; Rajendra P. Gajula; Russell Williams; Jessica Cades; Anvesh Annadanam; Danny Y. Song; Yonggang Zhang; Russell K. Hales; Joseph M. Herman; Elwood Armour; Theodore L. DeWeese; Edward M. Schaeffer; Phuoc T. Tran

Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the “non-oncogene” addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded “client” proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4–1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies.


Molecular Cancer Research | 2013

The Twist box domain is required for Twist1-induced prostate cancer metastasis

Rajendra P. Gajula; Sivarajan T. Chettiar; Russell Williams; Saravanan Thiyagarajan; Yoshinori Kato; Khaled Aziz; Ruoqi Wang; Nishant Gandhi; Aaron T. Wild; Farhad Vesuna; Jinfang Ma; Tarek Salih; Jessica Cades; Elana J. Fertig; Shyam Biswal; Timothy F. Burns; Christine H. Chung; Charles M. Rudin; Joseph M. Herman; Russell K. Hales; Venu Raman; Steven S. An; Phuoc T. Tran

Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial–mesenchymal transition (EMT) that promotes cancer metastasis. Structure–function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer. Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in prostate cancer cells using in vitro assays, which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extrathoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for prostate cancer cells to colonize metastatic lung lesions and extrathoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in prostate cancer cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and prostate cancer metastasis. Implications: Targeting the Twist box domain of Twist1 may effectively limit prostate cancer metastatic potential. Mol Cancer Res; 11(11); 1387–400. ©2013 AACR.


The Journal of Neuroscience | 2009

Identification of Candidate Genes and Gene Networks Specifically Associated with Analgesic Tolerance to Morphine

Jenica D. Tapocik; Noah E. Letwin; Cheryl L. Mayo; Bryan Frank; Troung Luu; Ovokeraye H. Achinike; Carrie D. House; Russell Williams; Greg I. Elmer; Norman H. Lee

Chronic morphine administration may alter the expression of hundreds to thousands of genes. However, only a subset of these genes is likely involved in analgesic tolerance. In this report, we used a behavior genetics strategy to identify candidate genes specifically linked to the development of morphine tolerance. Two inbred genotypes [C57BL/6J (B6), DBA2/J (D2)] and two reciprocal congenic genotypes (B6D2, D2B6) with the proximal region of chromosome 10 (Chr10) introgressed into opposing backgrounds served as the behavior genetic filter. Tolerance after therapeutically relevant doses of morphine developed most rapidly in the B6 followed by the B6D2 genotype and did not develop in the D2 mice and only slightly in the D2B6 animals indicating a strong influence of the proximal region of Chr10 in the development of tolerance. Gene expression profiling and pattern matching identified 64, 53, 86, and 123 predisposition genes and 81, 96, 106, and 82 tolerance genes in the periaqueductal gray (PAG), prefrontal cortex, temporal lobe, and ventral striatum, respectively. A potential gene network was identified in the PAG in which 19 of the 34 genes were strongly associated with tolerance. Eleven of the network genes were found to reside in quantitative trait loci previously associated with morphine-related behaviors, whereas seven were predictive of tolerance (morphine-naive condition). Overall, the genes modified by chronic morphine administration show a strong presence in canonical pathways representative of neuroadaptation. A potentially significant role for the micro-RNA and epigenetic mechanisms in response to chronic administration of pharmacologically relevant doses of morphine was highlighted by candidate genes Dicer and H19.


PLOS ONE | 2013

Concurrent versus sequential sorafenib therapy in combination with radiation for hepatocellular carcinoma.

Aaron T. Wild; Nishant Gandhi; Sivarajan T. Chettiar; Khaled Aziz; Rajendra P. Gajula; Russell Williams; Rachit Kumar; Kekoa Taparra; Jing Zeng; Jessica Cades; Esteban Velarde; Siddharth Menon; J.F. Geschwind; David Cosgrove; Timothy M. Pawlik; Anirban Maitra; John Wong; Russell K. Hales; Michael Torbenson; Joseph M. Herman; Phuoc T. Tran

Sorafenib (SOR) is the only systemic agent known to improve survival for hepatocellular carcinoma (HCC). However, SOR prolongs survival by less than 3 months and does not alter symptomatic progression. To improve outcomes, several phase I-II trials are currently examining SOR with radiation (RT) for HCC utilizing heterogeneous concurrent and sequential treatment regimens. Our study provides preclinical data characterizing the effects of concurrent versus sequential RT-SOR on HCC cells both in vitro and in vivo. Concurrent and sequential RT-SOR regimens were tested for efficacy among 4 HCC cell lines in vitro by assessment of clonogenic survival, apoptosis, cell cycle distribution, and γ-H2AX foci formation. Results were confirmed in vivo by evaluating tumor growth delay and performing immunofluorescence staining in a hind-flank xenograft model. In vitro, concurrent RT-SOR produced radioprotection in 3 of 4 cell lines, whereas sequential RT-SOR produced decreased colony formation among all 4. Sequential RT-SOR increased apoptosis compared to RT alone, while concurrent RT-SOR did not. Sorafenib induced reassortment into less radiosensitive phases of the cell cycle through G1-S delay and cell cycle slowing. More double-strand breaks (DSBs) persisted 24 h post-irradiation for RT alone versus concurrent RT-SOR. In vivo, sequential RT-SOR produced the greatest tumor growth delay, while concurrent RT-SOR was similar to RT alone. More persistent DSBs were observed in xenografts treated with sequential RT-SOR or RT alone versus concurrent RT-SOR. Sequential RT-SOR additionally produced a greater reduction in xenograft tumor vascularity and mitotic index than either concurrent RT-SOR or RT alone. In conclusion, sequential RT-SOR demonstrates greater efficacy against HCC than concurrent RT-SOR both in vitro and in vivo. These results may have implications for clinical decision-making and prospective trial design.


Scientific Reports | 2015

Voltage-gated Na + Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

Carrie D. House; Bi-Dar Wang; Kristin Ceniccola; Russell Williams; May Simaan; Jacqueline Olender; Vyomesh Patel; Daniel T. Baptista-Hon; Christina M. Annunziata; J. Silvio Gutkind; Tim G. Hales; Norman H. Lee

Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.


Oncogene | 2012

And-1 is required for the stability of histone acetyltransferase Gcn5.

Yongming Li; Aimee Jaramillo-Lambert; Yi Yang; Russell Williams; Norman H. Lee; Wenge Zhu

Histone acetyltransferases (HATs) have a central role in the modification of chromatin as well as in the pathogenesis of a broad set of diseases including cancers. Gcn5 is the first identified transcription-related HAT that has been implicated in the regulation of diverse cellular functions. However, how Gcn5 proteins are regulated remains largely unknown. Here we show that acidic nucleoplasmic DNA-binding protein (And-1, a high mobility group domain-containing protein) has remarkable capability to regulate the stability of Gcn5 proteins and thereby histone H3 acetylation. We find that And-1 forms a complex with both histone H3 and Gcn5. Downregulation of And-1 results in Gcn5 degradation, leading to the reduction of H3K9 and H3K56 acetylation. And-1 overexpression stabilizes Gcn5 through protein-protein interactions in vivo. Furthermore, And-1 expression is increased in cancer cells in a manner correlating with increased Gcn5 and H3K9Ac and H3K56Ac. Thus, our data reveal not only a functional link between Gcn5 and And-1 that is essential for Gcn5 protein stability and histone H3 acetylation, but also a potential role of And-1 in cancer.


Neoplasia | 2015

Structure-Function Studies of the bHLH Phosphorylation Domain of TWIST1 in Prostate Cancer Cells

Rajendra P. Gajula; Sivarajan T. Chettiar; Russell Williams; Katriana Nugent; Yoshinori Kato; Hailun Wang; Reem Malek; Kekoa Taparra; Jessica Cades; Anvesh Annadanam; A-Rum Yoon; Elana Fertig; Beth A. Firulli; Lucia Mazzacurati; Timothy F. Burns; Anthony B. Firulli; Steven S. An; Phuoc T. Tran

The TWIST1 gene has diverse roles in development and pathologic diseases such as cancer. TWIST1 is a dimeric basic helix-loop-helix (bHLH) transcription factor existing as TWIST1-TWIST1 or TWIST1-E12/47. TWIST1 partner choice and DNA binding can be influenced during development by phosphorylation of Thr125 and Ser127 of the Thr-Gln-Ser (TQS) motif within the bHLH of TWIST1. The significance of these TWIST1 phosphorylation sites for metastasis is unknown. We created stable isogenic prostate cancer cell lines overexpressing TWIST1 wild-type, phospho-mutants, and tethered versions. We assessed these isogenic lines using assays that mimic stages of cancer metastasis. In vitro assays suggested the phospho-mimetic Twist1-DQD mutation could confer cellular properties associated with pro-metastatic behavior. The hypo-phosphorylation mimic Twist1-AQA mutation displayed reduced pro-metastatic activity compared to wild-type TWIST1 in vitro, suggesting that phosphorylation of the TWIST1 TQS motif was necessary for pro-metastatic functions. In vivo analysis demonstrates that the Twist1-AQA mutation exhibits reduced capacity to contribute to metastasis, whereas the expression of the Twist1-DQD mutation exhibits proficient metastatic potential. Tethered TWIST1-E12 heterodimers phenocopied the Twist1-DQD mutation for many in vitro assays, suggesting that TWIST1 phosphorylation may result in heterodimerization in prostate cancer cells. Lastly, the dual phosphatidylinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibitor BEZ235 strongly attenuated TWIST1-induced migration that was dependent on the TQS motif. TWIST1 TQS phosphorylation state determines the intensity of TWIST1-induced pro-metastatic ability in prostate cancer cells, which may be partly explained mechanistically by TWIST1 dimeric partner choice.


Cancer Research | 2017

TWIST1-WDR5-Hottip regulates Hoxa9 chromatin to facilitate prostate cancer metastasis.

Reem Malek; Rajendra P. Gajula; Russell Williams; Belinda Nghiem; Brian W. Simons; Katriana Nugent; Hailun Wang; Kekoa Taparra; Ghali Lemtiri-Chlieh; A-Rum Yoon; Lawrence D. True; Steven S. An; Theodore L. DeWeese; Ashley E. Ross; Edward M. Schaeffer; Kenneth J. Pienta; Paula J. Hurley; Colm Morrissey; Phuoc T. Tran

TWIST1 is a transcription factor critical for development that can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are coexpressed in mouse prostate and then silenced postnatally. Here we report that TWIST1 and HOXA9 coexpression are reactivated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to coenrichment of TWIST1 and WDR5 as well as increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter, which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacologic inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. Cancer Res; 77(12); 3181-93. ©2017 AACR.


Experimental Cell Research | 2011

Dual Mode of Glucagon Receptor Internalization: Role of PKCα, GRKs and β-arrestins

Lada Krilov; Amy Nguyen; Teruo Miyazaki; Cecilia G. Unson; Russell Williams; Norman H. Lee; Susan Ceryak; Bernard Bouscarel

Glucagon levels are elevated in diabetes and some liver diseases. Increased glucagon secretion leads to abnormal stimulation of glucagon receptors (GRs) and consequent elevated glucose production in the liver. Blocking glucagon receptor signaling has been proposed as a potential treatment option for diabetes and other conditions associated with hyperglycemia. Elucidating mechanisms of GR desensitization and downregulation may help identify new drug targets besides GR itself. The present study explores the mechanisms of GR internalization and the role of PKCα, GPCR kinases (GRKs) and β-arrestins therein. We have reported previously that PKCα mediates GR phosphorylation and desensitization. While the PKC agonist, PMA, did not affect GR internalization when tested alone, it increased glucagon-mediated GR internalization by 25-40% in GR-expressing HEK-293 cells (HEK-GR cells). In both primary hepatocytes and HEK-GR cells, glucagon treatment recruited PKCα to the plasma membrane where it colocalized with GR. We also observed that overexpression of GRK2, GRK3, or GRK5 enhanced GR internalization. In addition, we found that GR utilizes both clathrin- and caveolin-mediated endocytosis in HEK-GR cells. Glucagon triggered translocation of both β-arrestin1 and β-arrestin2 from the cytosol to the perimembrane region, and overexpression of β-arrestin1 and β-arrestin2 increased GR internalization. Furthermore, both β-arrestin1 and β-arrestin2 colocalized with GR and with Cav-1, suggesting the possible involvement of these arrestins in GR internalization.

Collaboration


Dive into the Russell Williams's collaboration.

Top Co-Authors

Avatar

Phuoc T. Tran

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica Cades

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Kekoa Taparra

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Herman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nishant Gandhi

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Reem Malek

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Hailun Wang

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge