Rustem Uzbekov
François Rabelais University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rustem Uzbekov.
Journal of Biological Chemistry | 1999
Régis Giet; Rustem Uzbekov; Fabien Cubizolles; Katherine Le Guellec; Claude Prigent
We have previously reported on the cloning of XlEg5, a Xenopus laevis kinesin-related protein from thebimC family (Le Guellec, R., Paris, J., Couturier, A., Roghi, C., and Philippe, M. (1991) Mol. Cell. Biol. 11, 3395–3408) as well as pEg2, an Aurora-related serine/threonine kinase (Roghi, C., Giet, R., Uzbekov, R., Morin, N., Chartrain, I., Le Guellec, R., Couturier, A., Dorée, M., Philippe, M., and Prigent, C. (1998) J. Cell Sci. 111, 557–572). Inhibition of either XlEg5 or pEg2 activity during mitosis in Xenopus egg extract led to monopolar spindle formation. Here, we report that inXenopus XL2 cells, pEg2 and XlEg5 are both confined to separated centrosomes in prophase, and then to the microtubule spindle poles. We also show that pEg2 co-immunoprecipitates with XlEg5 from egg extracts and XL2 cell lysates. Both proteins can directly interactin vitro, but also through the two-hybrid system. Furthermore immunoprecipitated pEg2 were found to remain active when bound to the beads and phosphorylate XlEg5 present in the precipitate. Two-dimensional mapping of XlEg5 tryptic peptides phosphorylatedin vivo first confirmed that XlEg5 was phosphorylated by p34 cdc2 and next revealed that in vitro pEg2 kinase phosphorylated XlEg5 on the same stalk domain serine residue that was phosphorylated in metabolically labeled XL2 cells. The kinesin-related XlEg5 is to our knowledge the first in vivo substrate ever reported for an Aurora-related kinase.
FEBS Letters | 1996
Nikolaj K. Isaev; Dmitry B. Zorov; E. V. Stelmashook; Rustem Uzbekov; Maxim B. Kozhemyakin; Ilya V. Victorov
Rhodamine 123 staining and electron microscopy were used to reveal a correlation between the ultrastructural and functional state of cultured cerebellar granule cells after short glutamate treatment. Glutamate exposure (15 min, 100 μM) in Mg2+‐free solution caused considerable ultrastructural alterations in a granule cell: clumping of the chromatin, swelling of the endoplasmic reticulum and mitochondria, and disruption of the mitochondrial cristae. After glutamate treatment, the mitochondria of the neurons lost their ability to sequester rhodamine 123. Both the N‐methyl‐d‐aspartate receptor channel blocker MK‐801 (30 μM) and cobalt chloride (2 mM) prevented the deteriorative effects of glutamate. These data suggest that glutamate‐induced Ca2+ overload of the neurons can lead to non‐specific permeability of the inner mitochondrial membrane, resulting in neuronal death.
Biology of Reproduction | 2008
Svetlana Uzbekova; Yannick Arlot-Bonnemains; Joëlle Dupont; Rozenn Dalbiès-Tran; Pascal Papillier; Sophie Pennetier; Aurore Thélie; Christine Perreau; Pascal Mermillod; Claude Prigent; Rustem Uzbekov
Abstract Maturation of immature bovine oocytes requires cytoplasmic polyadenylation and synthesis of a number of proteins involved in meiotic progression and metaphase-II arrest. Aurora serine-threonine kinases—localized in centrosomes, chromosomes, and midbody—regulate chromosome segregation and cytokinesis in somatic cells. In frog and mouse oocytes, Aurora A regulates polyadenylation-dependent translation of several mRNAs such as MOS and CCNB1, presumably by phosphorylating CPEB, and Aurora B phosphorylates histone H3 during meiosis. We analyzed the expression of three Aurora kinase genes—AURKA, AURKB, and AURKC—in bovine oocytes during meiosis by reverse transcription followed by quantitative real-time PCR and immunodetection. Aurora A was the most abundant form in oocytes, both at mRNA and protein levels. AURKA protein progressively accumulated in the oocyte cytoplasm during antral follicle growth and in vitro maturation. AURKB associated with metaphase chromosomes. AURKB, AURKC, and Thr-phosphorylated AURKA were detected at a contractile ring/midbody during the first polar body extrusion. CPEB, localized in oocyte cytoplasm, was hyperphosphorylated during prophase/metaphase-I transition. Most CPEB degraded in metaphase-II oocytes and remnants remained localized in a contractile ring. Roscovitine, U0126, and metformin inhibited meiotic divisions; they all induced a decrease of CCNB1 and phospho-MAPK3/1 levels and prevented CPEB degradation. However, only metformin depleted AURKA. The Aurora kinase inhibitor VX680 at 100 nmol/L did not inhibit meiosis but led to multinuclear oocytes due to the failure of the polar body extrusion. Thus, in bovine oocyte meiosis, massive destruction of CPEB accompanies metaphase-I/II transition, and Aurora kinases participate in regulating segregation of the chromosomes, maintenance of metaphase-II, and formation of the first polar body.
Cellular and Molecular Life Sciences | 2013
Pauline Ferraris; Elodie Beaumont; Rustem Uzbekov; Denys Brand; Julien Gaillard; Emmanuelle Blanchard; Philippe Roingeard
Like most positive-strand RNA viruses, hepatitis C virus (HCV) forms a membrane-associated replication complex consisting of replicating RNA, viral and host proteins anchored to altered cell membranes. We used a combination of qualitative and quantitative electron microscopy (EM), immuno-EM, and the 3D reconstruction of serial EM sections to analyze the host cell membrane alterations induced by HCV. Three different types of membrane alteration were observed: vesicles in clusters (ViCs), contiguous vesicles (CVs), and double-membrane vesicles (DMVs). The main ultrastructural change observed early in infection was the formation of a network of CVs surrounding the lipid droplets. Later stages in the infectious cycle were characterized by a large increase in the number of DMVs, which may be derived from the CVs. These DMVs are thought to constitute the membranous structures harboring the viral replication complexes in which viral replication is firmly and permanently established and to protect the virus against double-stranded RNA-triggered host antiviral responses.
FEBS Letters | 2001
Yannick Arlot-Bonnemains; Andrea Klotzbucher; Régis Giet; Rustem Uzbekov; Réjane Bihan; Claude Prigent
Like for all aurora‐A kinases, the Xenopus pEg2 kinase level peaks in G2/M and is hardly detectable in G1 cells, suggesting that the protein is degraded upon exit from mitosis as reported for the human aurora‐A kinase. We identified for the first time a sequence RxxL in the C‐terminal end of the kinase catalytic domain. Mutation of this sequence RxxL to RxxI suppresses the ubiquitination of the protein as well as its degradation. The sequence RxxL corresponding to the pEg2 functional destruction box has been conserved throughout evolution in all aurora kinases including aurora‐A, ‐B and ‐C.
Biology of the Cell | 2002
Rustem Uzbekov; Igor Kireyev; Claude Prigent
In mammalian cells, the separation of centrosomes is a prerequisite for bipolar mitotic spindle assembly. We have investigated the respective contribution of the two cytoskeleton components, microtubules and actin filaments, in this process. Distances between centrosomes have been measured during cell cycle progression in Xenopus laevis XL2 cultured cells in the presence or absence of either network. We considered two stages in centrosome separation: the splitting stage, when centrosomes start to move apart (minimum distance of 1 μm), and the elongation stage (from 1 to 7 μm). In interphase, depolymerisation of microtubules by nocodazole significantly inhibited the splitting stage, while the elongation stage was, on the contrary, facilitated. In mitosis, while nocodazole treatment completely blocked spindle assembly, in prophase, we observed that 55% of the centrosomes separated, versus 94% in the control. Upon actin depolymerisation by latrunculin, splitting of the interphase centrosome was blocked, and cells entered mitosis with unseparated centrosomes. Cells compensated for this separation delay by increasing the length of both prophase and prometaphase stages to allow for centrosome separation until a minimal distance was reached. Then the cells passed through anaphase, performing proper chromosome separation, but cytokinesis did not occur, and binuclear cells were formed. Our results clearly show that the actin microfilaments participate in centrosome separation at the G2/M transition and work in synergy with the microtubules to accelerate centrosome separation during mitosis.
American Journal of Physiology-endocrinology and Metabolism | 2013
Sylvain Auclair; Rustem Uzbekov; Sébastien Elis; Laura Sanchez; Igor Kireev; Lionel Lardic; Rozenn Dalbiès-Tran; Svetlana Uzbekova
Cumulus cells (CC) surround the oocyte and are coupled metabolically through regulation of nutrient intake. CC removal before in vitro maturation (IVM) decreases bovine oocyte developmental competence without affecting nuclear meiotic maturation. The objective was to investigate the influence of CC on oocyte cytoplasmic maturation in relation to energy metabolism. IVM with either cumulus-enclosed (CEO) or -denuded (DO) oocytes was performed in serum-free metabolically optimized medium. Transmission electron microscopy revealed different distribution of membrane-bound vesicles and lipid droplets between metaphase II DO and CEO. By Nile Red staining, a significant reduction in total lipid level was evidenced in DO. Global transcriptomic analysis revealed differential expression of genes regulating energy metabolism, transcription, and translation between CEO and DO. By Western blot, fatty acid synthase (FAS) and hormone-sensitive phospholipase (HSL) proteins were detected in oocytes and in CC, indicating a local lipogenesis and lypolysis. FAS protein was significantly less abundant in DO that in CEO and more highly expressed in CC than in the oocytes. On the contrary, HSL protein was more abundant in oocytes than in CC. In addition, active Ser⁵⁶³-phosphorylated HSL was detected in the oocytes only after IVM, and its level was similar in CEO and DO. In conclusion, absence of CC during IVM affected lipid metabolism in the oocyte and led to suboptimal cytoplasmic maturation. Thus, CC may influence the oocyte by orienting the consumption of nutritive storage via regulation of local fatty acid synthesis and lipolysis to provide energy for maturation.
Journal of Cerebral Blood Flow and Metabolism | 2014
Mélanie Kuntz; Caroline Mysiorek; Olivier Pétrault; Maud Petrault; Rustem Uzbekov; Régis Bordet; Laurence Fenart; Roméo Cecchelli; Vincent Bérézowski
The disappointing clinical outcomes of neuroprotectants challenge the relevance of preclinical stroke models and data in defining early cerebrovascular events as potential therapeutic targets. The kinetics of blood–brain barrier (BBB) leakage after reperfusion and the link with parenchymal lesion remain debated. By using in vivo and in vitro approaches, we conducted a kinetic analysis of BBB dysfunction during early reperfusion. After 60 minutes of middle cerebral artery occlusion followed by reperfusion times up to 24 hours in mice, a non-invasive magnetic resonance imaging method, through an original sequence of diffusion-weighted imaging, determined brain water mobility in microvascular compartments (D∗) apart from parenchymal compartments (apparent diffusion coefficient). An increase in D∗ found at 4 hours post reperfusion concurred with the onset of both Evans blue/Dextran extravasations and in vitro BBB opening under oxygen-glucose deprivation and reoxygenation (R). The BBB leakage coincided with an emerging cell death in brain tissue as well as in activated glial cells in vitro. The co-culture of BBB endothelial and glial cells evidenced a recovery of endothelium tightness when glial cells were absent or non-injured during R. Preserving the ischemic brain parenchymal cells within 4 hours of reperfusion may improve therapeutic strategies for cerebrovascular protection against stroke.
Bone | 2011
Delphine B. Maurel; Christelle Jaffré; Gaël Y. Rochefort; P.C. Aveline; Nathalie Boisseau; Rustem Uzbekov; D. Gosset; Chantal Pichon; Nicola L. Fazzalari; Stéphane Pallu; Claude-Laurent Benhamou
INTRODUCTION Alcohol is known to decrease bone mineral density (BMD) and to induce trabecular microarchitecture deterioration. However, little is known about the effects of chronic alcohol consumption on osteocytes in situ. The aim of this study was to assess the effects of a high alcohol dose on osteocytes in an alcohol-induced osteopenia model. MATERIALS AND METHODS 24 male Wistar rats, 2-months old were separated in 2 groups: Control (C) or Alcohol (A35). The rats in the A35 group drank a beverage composed of 35% ethanol v/v mixed to water for 17 weeks. BMD was assessed by DXA, while the microarchitecture was analyzed using μCT. Bone remodeling was studied measuring serum concentration of osteocalcin, NTx and TRAP. Bone marrow adiposity, osteoblastic lineage differentiation, osteocyte morphology and apoptosis were assessed using bright field, epifluorescence, transmission electron and confocal microscopy. RESULTS BMD, trabecular thickness, TRAP and NTx concentration were significantly decreased in A35, while cortical thickness was thinner. There were 10 fold more cells stained with cleaved caspase-3, and 35% more empty lacunae in A35, these data indicating a large increase in osteocyte apoptosis in the A35 group. The number of lipid droplets in the marrow was increased in A35 (7 fold). Both the osteocyte apoptosis and the fat bone marrow content strongly correlated with femur BMD (p=0.0017, r = -0.72 and p=0.002, r = -0.70) and whole body BMD. CONCLUSION These data suggest that low BMD is associated with osteocyte apoptosis and bone marrow fat content in alcohol-induced osteopenia.
Molecular Endocrinology | 2014
Laura Sánchez-Lazo; Daphné Brisard; Sébastien Elis; Virginie Maillard; Rustem Uzbekov; Valérie Labas; Alice Desmarchais; Pascal Papillier; Philippe Monget; Svetlana Uzbekova
Oocyte meiotic maturation requires energy from various substrates including glucose, amino acids, and lipids. Mitochondrial fatty acid (FA) β-oxidation (FAO) in the oocyte is required for meiotic maturation, which is accompanied by differential expression of numerous genes involved in FAs metabolism in surrounding cumulus cells (CCs) in vivo. The objective was to elucidate components involved in FAs metabolism in CCs during oocyte maturation. Twenty-seven genes related to lipogenesis, lipolysis, FA transport, and FAO were chosen from comparative transcriptome analysis of bovine CCs before and after maturation in vivo. Using real-time PCR, 22 were significantly upregulated at different times of in vitro maturation (IVM) in relation to oocyte meiosis progression from germinal vesicle breakdown to metaphase-II. Proteins FA synthase, acetyl-coenzyme-A carboxylase, carnitine palmitoyltransferase, perilipin 2, and FA binding protein 3 were detected by Western blot and immunolocalized to CCs and oocyte cytoplasm, with FA binding protein 3 concentrated around oocyte chromatin. By mass spectrometry, CCs lipid profiling was shown to be different before and after IVM. FAO inhibitors etomoxir and mildronate dose-dependently decreased the oocyte maturation rate in vitro. In terms of viability, cumulus enclosed oocytes were more sensitive to etomoxir than denuded oocytes. In CCs, etomoxir (150 μM) led to downregulation of lipogenesis genes and upregulated lipolysis and FAO genes. Moreover, the number of lipid droplets decreased, whereas several lipid species were more abundant compared with nontreated CCs after IVM. In conclusion, FAs metabolism in CCs is important to maintain metabolic homeostasis and may influence meiosis progression and survival of enclosed oocytes.