Rusty D. Day
National Institute of Standards and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rusty D. Day.
Environmental Health Perspectives | 2007
Rusty D. Day; Albert L. Segars; Michael D. Arendt; A. Michelle Lee; Margie M. Peden-Adams
Background Mercury is a pervasive environmental pollutant whose toxic effects have not been studied in sea turtles in spite of their threatened status and evidence of immunosuppression in diseased populations. Objectives In the present study we investigate mercury toxicity in loggerhead sea turtles (Caretta caretta) by examining trends between blood mercury concentrations and various health parameters. Methods Blood was collected from free-ranging turtles, and correlations between blood mercury concentrations and plasma chemistries, complete blood counts, lysozyme, and lymphocyte proliferation were examined. Lymphocytes were also harvested from free-ranging turtles and exposed in vitro to methylmercury to assess proliferative responses. Results Blood mercury concentrations were positively correlated with hematocrit and creatine phosphokinase activity, and negatively correlated with lymphocyte cell counts and aspartate amino-transferase. Ex vivo negative correlations between blood mercury concentrations and B-cell proliferation were observed in 2001 and 2003 under optimal assay conditions. In vitro exposure of peripheral blood leukocytes to methylmercury resulted in suppression of proliferative responses for B cells (0.1 μg/g and 0.35 μg/g) and T cells (0.7 μg/g). Conclusions The positive correlation between blood mercury concentration and hematocrit reflects the higher affinity of mercury species for erythrocytes than plasma, and demonstrates the importance of measuring hematocrit when analyzing whole blood for mercury. In vitro immunosuppression occurred at methylmercury concentrations that correspond to approximately 5% of the individuals captured in the wild. This observation and the negative correlation found ex vivo between mercury and lymphocyte numbers and mercury and B-cell proliferative responses suggests that subtle negative impacts of mercury on sea turtle immune function are possible at concentrations observed in the wild.
Journal of Analytical Atomic Spectrometry | 2004
W. Clay Davis; Stacy S. Vander Pol; Michele M. Schantz; Stephen E. Long; Rusty D. Day; Steven J. Christopher
A highly sensitive and selective method has been developed for the determination of methylmercury in biological specimens and NIST Standard Reference Materials (SRMs). The procedure involves microwave extraction with acetic acid, followed by derivatization and headspace solid-phase microextraction (SPME) with a polydimethylsiloxane (PDMS)-coated silica fiber. Optimization of conditions including gas chromatograph injection temperature, microwave extraction power and microwave extraction time are presented. The identification and quantification (via the method of standard additions) of the extracted compounds is carried out by capillary gas chromatography with inductively coupled plasma mass spectrometric detection (GC-ICP-MS) using a unique heated interface that was designed for this work. The SPME-GC-ICP-MS method was validated for the determination of methylmercury (MeHg) concentrations in a variety of biological Standard Reference Materials (SRMs), ranging from 13.2 ng g−1 in SRM 1566b Oyster Tissue, to 397 ng g−1 in SRM 1946 Lake Superior Fish Tissue. Additionally, this method was applied to the determination of MeHg in seabird eggs (common murres, Uria aalge and thick-billed murres, Uria lomvia) collected from colonies on Little Diomede and Bogoslof islands in the Bering Sea and Saint Lazaria Island in the Gulf of Alaska and cryogenically banked in the Marine Environmental Specimen Bank. The results obtained demonstrate that SPME-GC-ICP-MS is a sensitive technique for the determination of methylmercury at trace and ultra-trace levels in a variety of natural matrices with high reproducibility and accuracy. In all instances, the sample-to-sample variability was typically 2% relative standard deviation (RSD) and the method detection limit for methylmercury was 4.2 pg g−1 (as Hg), based on a 0.5 g tissue sample of SRM 1566b Oyster Tissue.
Environmental Toxicology and Chemistry | 2007
Gaëlle Blanvillain; Jeffrey A. Schwenter; Rusty D. Day; David Point; Steven J. Christopher; William A. Roumillat; David W. Owens
Total mercury concentrations were measured in diamondback terrapin blood and scutes collected from four sites in South Carolina, USA, and at a superfund site in Brunswick, Georgia, USA. There was a strong correlation between mercury concentrations in the two terrapin body compartments (Kendalls tau = 0.79, p < 0.001). Mercury concentrations in terrapin scute and blood and in salt marsh periwinkles, Littoraria irrorata, were significantly higher in Brunswick (scute x = 3810.2 ng/g, blood x = 746.2 ng/g) than from all other sites (scute x = 309.5 ng/g, blood x = 43.2 ng/g, p < 0.001). Seasonal fluctuations of total mercury in the blood and scutes of terrapins collected in the Ashley River, South Carolina, were significantly lower in August than in April, June, or October in blood (p < 0.001); however, scute concentrations did not vary seasonally. Overall, we found higher concentrations of mercury in the scutes of females than males (n = 32, p < 0.05). Larger females may preferentially prey on larger food items, like large periwinkles, which had significantly higher mercury levels in their body tissues than smaller periwinkles (p < 0.001). Methylmercury levels in terrapin scutes were measured, revealing that 90% of the total mercury stored in this compartment was in the organic form. A methylmercury biomagnification factor of 173.5 was calculated from snails to terrapin scutes, and we found that mercury levels in scutes were representative of the mercury levels in other compartments of the ecosystem. These findings show that terrapin scutes are good predictors of mercury pollution and that this species could be used as a bioindicator for assessing mercury contamination of estuarine systems.
Environmental Science & Technology | 2012
Rusty D. Day; David G. Roseneau; Sylvain Bérail; Keith A. Hobson; Olivier F. X. Donard; Stacy S. Vander Pol; Rebecca S. Pugh; Amanda J. Moors; Stephen E. Long; Paul R. Becker
Elevated mercury concentrations ([Hg]) were found in Alaskan murre (Uria spp.) eggs from the coastal embayment of Norton Sound relative to insular colonies in the northern Bering Sea-Bering Strait region. Stable isotopes of Hg, carbon, and nitrogen were measured in the eggs to investigate the source of this enrichment. Lower δ(13)C values in Norton Sound eggs (-23.3‰ to -20.0‰) relative to eggs from more oceanic colonies (-20.9‰ to -18.7‰) indicated that a significant terrestrial carbon source was associated with the elevated [Hg] in Norton Sound, implicating the Yukon River and smaller Seward Peninsula watersheds as the likely Hg source. The increasing [Hg] gradient extending inshore was accompanied by strong decreasing gradients of δ(202)Hg and Δ(199)Hg in eggs, indicating lower degrees of mass-dependent (MDF) and mass-independent Hg fractionation (MIF) (respectively) in the Norton Sound food web. Negative or zero MDF and MIF signatures are typical of geological Hg sources, which suggests murres in Norton Sound integrated Hg from a more recent geological origin that has experienced a relatively limited extent of aquatic fractionation relative to more oceanic colonies. The association of low δ(202)Hg and Δ(199)Hg with elevated [Hg] and terrestrial δ(13)C values suggested that Hg stable isotopes in murre eggs effectively differentiated terrestrial/geogenic Hg sources from oceanic reservoirs.
Journal of Wildlife Diseases | 2010
Rusty D. Day; Jennifer M. Keller; Craig A. Harms; Al Segars; Wendy M. Cluse; Matthew H. Godfrey; A. Michelle Lee; Margie M. Peden-Adams; Kelly Thorvalson; Mark G. Dodd; Terry M. Norton
An increase in the incidence of debilitated loggerhead sea turtle (Caretta caretta) strandings in the southeastern United States has been observed in recent years. These turtles are characterized by emaciation and heavy burdens of external and internal parasites, and bacterial infections, but the underlying cause of their condition is unknown. To investigate further the causes of these strandings, a health assessment was performed on stranded, debilitated loggerhead turtles, and contaminant concentrations in various tissues were compared to those from healthy turtles. This portion of the study investigated the potential role of mercury (Hg) toxicity in the debilitated condition described above. Hematocrit, total protein, albumin, globulin, glucose, calcium, lymphocyte counts, heterophil:lymphocyte ratios, aspartate aminotransferase, uric acid, sodium, and chloride were altered in debilitated loggerheads relative to healthy animals. However, none of the aforementioned health indicators correlated with Hg concentrations in either red blood cells (RBCs) or plasma. The Hg concentration in RBCs was 129±72 (mean±standard deviation) times higher than in plasma, causing a significant dilution of Hg in whole blood due to extreme anemia. Mercury concentrations in RBCs (73.7±21.2 ng/g) and scutes (455±57 ng/g) from debilitated turtles were similar to or lower than those reported for healthy animals, indicating no elevation in Hg exposure before and during the progression of this condition. These findings suggest that Hg toxicity does not play a role in the debilitated loggerhead condition observed in the southeastern United States.
Environmental Pollution | 2012
Rusty D. Day; David G. Roseneau; Stacy S. Vander Pol; Keith A. Hobson; Olivier F. X. Donard; Rebecca S. Pugh; Amanda J. Moors; Paul R. Becker
Mercury concentration ([Hg]), δ(15)N, and δ(13)C values were measured in eggs from common murres (Uria aalge), thick-billed murres (U. lomvia), glaucous gulls (Larus hyperboreus), and glaucous-winged gulls (L. glaucescens) collected in Alaska from 1999 to 2005. [Hg] was normalized to a common trophic level using egg δ(15)N values and published Hg trophic magnification factors. Egg [Hg] was higher in murres from Gulf of Alaska, Cook Inlet, and Norton Sound regions compared to Bering Sea and Bering Strait regions, independent of trophic level. We believe the Yukon River outflow and terrestrial Hg sources on the southern Seward Peninsula are responsible for the elevated [Hg] in Norton Sound eggs. Normalizing for trophic level generally diminished or eliminated differences in [Hg] among taxa, but temporal variability was unrelated to trophic level. Normalizing murre egg [Hg] by trophic level improves the confidence in regional comparisons of Hg sources and biogeochemical cycling in Alaska.
PLOS ONE | 2018
Nicole I. Stacy; Jennifer M. Lynch; Michael D. Arendt; Larisa Avens; Joanne Braun McNeill; Carolyn Cray; Rusty D. Day; Craig A. Harms; A. Michelle Lee; Margie M. Peden-Adams; Kelly Thorvalson; Al Segars; Terry M. Norton
Chronically debilitated loggerhead sea turtles (Caretta caretta) (DT) are characterized by emaciation, lethargy, and heavy barnacle coverage. Although histopathological findings associated with this condition have been reported, only limited data is available on health variables with clinical application. The objectives of this study were to 1) to compare morphometrics, clinicopathological variables, and immune functions of DTs to a group of apparently healthy loggerhead turtles to better understand the pathophysiology of the condition and 2) to assess health parameters in live debilitated turtles as they recovered during rehabilitation in order to identify potential prognostic indicators. We examined and sampled 43 DTs stranded from North Carolina to Florida for 47 health variables using standardized protocols to further characterize the condition. DTs were grouped into categories of severity of the condition, and those that survived were sampled at four time points through rehabilitation. All groups and time points were compared among DTs and to clinically healthy loggerhead turtles. Compared to healthy turtles, DTs had significantly lower body condition index, packed cell volume (PCV), total white blood cell (WBC) count, lymphocytes, glucose (Glc), total protein, all protein fractions as determined by electrophoresis, calcium (Ca), phosphorus (P), Ca:P ratio, potassium (K), lymphocyte proliferation, and greater heterophil toxicity and left-shifting, uric acid (UA), aspartate aminotransferase, creatine kinase, lysozyme, and respiratory burst. From admission to recovery, hematology and plasma chemistry data improved as expected. The most informative prognostic indicators, as determined by correlations with a novel severity indicator (based on survival times), were plastron concavity, P, albumin, total solids, UA, lymphocyte proliferation, WBC, K, Glc, Ca:P, and PCV. The results of this study document the wide range and extent of morphometric and metabolic derangements in chronically debilitated turtles. Monitoring morphometrics and clinicopathological variables of these animals is essential for diagnosis, treatment, and prognosis during rehabilitation.
Nature Geoscience | 2011
D. Point; Jeroen E. Sonke; Rusty D. Day; David G. Roseneau; Keith A. Hobson; S. S. Vander Pol; Amanda J. Moors; Rebecca S. Pugh; Olivier F. X. Donard; Paul R. Becker
Environmental Science & Technology | 2005
Rusty D. Day; Steven J. Christopher; Paul R. Becker; David W. Whitaker
Environmental Science & Technology | 2005
Jennifer M. Keller; Kurunthachalam Kannan; Sachi Taniyasu; Nobuyoshi Yamashita; Rusty D. Day; Michael D. Arendt; and Al L. Segars; John R. Kucklick