Ruth Barden
Wessex Water
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruth Barden.
Water Research | 2015
Bruce Petrie; Ruth Barden; Barbara Kasprzyk-Hordern
This review identifies understudied areas of emerging contaminant (EC) research in wastewaters and the environment, and recommends direction for future monitoring. Non-regulated trace organic ECs including pharmaceuticals, illicit drugs and personal care products are focused on due to ongoing policy initiatives and the expectant broadening of environmental legislation. These ECs are ubiquitous in the aquatic environment, mainly derived from the discharge of municipal wastewater effluents. Their presence is of concern due to the possible ecological impact (e.g., endocrine disruption) to biota within the environment. To better understand their fate in wastewaters and in the environment, a standardised approach to sampling is needed. This ensures representative data is attained and facilitates a better understanding of spatial and temporal trends of EC occurrence. During wastewater treatment, there is a lack of suspended particulate matter analysis due to further preparation requirements and a lack of good analytical approaches. This results in the under-reporting of several ECs entering wastewater treatment works (WwTWs) and the aquatic environment. Also, sludge can act as a concentrating medium for some chemicals during wastewater treatment. The majority of treated sludge is applied directly to agricultural land without analysis for ECs. As a result there is a paucity of information on the fate of ECs in soils and consequently, there has been no driver to investigate the toxicity to exposed terrestrial organisms. Therefore a more holistic approach to environmental monitoring is required, such that the fate and impact of ECs in all exposed environmental compartments are studied. The traditional analytical approach of applying targeted screening with low resolution mass spectrometry (e.g., triple quadrupoles) results in numerous chemicals such as transformation products going undetected. These can exhibit similar toxicity to the parent EC, demonstrating the necessity of using an integrated analytical approach which compliments targeted and non-targeted screening with biological assays to measure ecological impact. With respect to current toxicity testing protocols, failure to consider the enantiomeric distribution of chiral compounds found in the environment, and the possible toxicological differences between enantiomers is concerning. Such information is essential for the development of more accurate environmental risk assessment.
Journal of Chromatography A | 2016
Bruce Petrie; Jane Youdan; Ruth Barden; Barbara Kasprzyk-Hordern
Reported herein is new analytical methodology for the determination of 90 emerging contaminants (ECs) in liquid environmental matrices (crude wastewater, final effluent and river water). The application of a novel buffer, ammonium fluoride improved signal response for several ECs determined in negative ionisation mode. Most notably the sensitivity of steroid estrogens was improved by 4-5 times in environmental extracts. Method recoveries ranged from 40 to 152% in all matrices and method quantitation limits (MQLs) achieved were <1ngL(-1) for numerous ECs. Development of a microwave assisted extraction (MAE) protocol as an additional sample extraction step for solid matrices enabled 63 ECs to be simultaneously analysed in digested sludge. To the authors knowledge this is considerably more than any previously reported MAE method. Here, MQLs ranged from 0.1-24.1ngg(-1) dry weight. The application of MAE offers several advantages over pressurized liquid extraction including faster sample preparation, lower solvent requirements, and the ability to perform several extractions simultaneously as well as lower purchasing and running costs. To demonstrate the methods sensitivity, application to environmental samples revealed 68 and 40 ECs to be above their respective MQL in liquid environmental samples and digested sludge, respectively. To date, this is the most comprehensive multi-residue analytical method reported in the literature for the determination of ECs in both liquid and solid environmental matrices.
Science of The Total Environment | 2009
Michael J. Bowes; Jim T. Smith; Helen P. Jarvie; Colin Neal; Ruth Barden
Changes in the relationship between soluble reactive phosphorus (SRP) concentration and river flow between 1966 and 2006 were assessed for the River Frome, UK using the recently developed Load Apportionment Model. The resulting source load estimates gave good agreement with known changes within the catchment. The model indicated an increase in point source contribution to the total river load from 46% to 62% between 1970 and 1985. This corresponded with the population increase within the catchment during that time. The predicted mean SRP load was highest between 1996 and 2000 (30 t y(-1)), with 49% coming from point sources. Despite no lowering in population or major changes in agricultural practice, the model predicted a reduced load of 18.1 t y(-1) for the period 2001 to 2005, due mainly to a decrease in point source inputs from 14.6 t y(-1) to 6.1 t y(-1) (equivalent to 34% of the total load). This prediction matches the major improvements in sewage treatment that occurred within the catchment in 2002. This study thus provides a major validation of the Load Apportionment Model. The model provides an effective and rapid method of determining past changes in phosphorus sources, based entirely on the P concentration - flow relationship: critically, it does not require any historical information on land use, fertiliser application rates, topography, soil types and sewage inputs. Further decreases in SRP concentration in the River Frome during the algal growing season would be best achieved by further reductions of STW inputs.
Environmental Science & Technology | 2016
Bruce Petrie; Jane Youdan; Ruth Barden; Barbara Kasprzyk-Hordern
Intentional or accidental release (direct disposal) of high loads of unused pharmaceuticals into wastewater can go unnoticed. Here, direct disposal of a pharmaceutical drug via the sewer network was identified for the first time using wastewater analysis. An irregularly high load of the antidepressant fluoxetine in raw wastewater (10.5 ± 2.4 g d(-1)) was up to 11 times greater than any other day. National prescription data revealed a predicted daily fluoxetine load for the studied treatment works to be 0.4-1.6 g d(-1). Enantio-selective analysis showed the high load of fluoxetine was present as a racemic mixture, which is typical for fluoxetine in dispensed formulations. As fluoxetine undergoes stereoselective metabolism within the body, a racemic mixture in wastewater suggests a nonconsumed drug was the major contributor of the high load. This was confirmed by its major metabolite norfluoxetine whose load did not increase on this day. Considering the most commonly prescribed formulation of fluoxetine, this increased load accounts for the disposal of ∼915 capsules. Furthermore, as fluoxetine is prescribed as one capsule per day, disposal is unlikely to be at the patient level. It is postulated that direct disposal was from a facility which handles larger quantities of the drug (e.g., a pharmacy).
Environmental Science & Technology | 2016
Bruce Petrie; Anthony Gravell; Graham A. Mills; Jane Youdan; Ruth Barden; Barbara Kasprzyk-Hordern
Passive sampling is proposed as an alternative to traditional grab- and composite-sampling modes. Investigated here is a novel passive sampler configuration, the Chemcatcher containing an Atlantic HLB disk covered by a 0.2 μm poly(ether sulfone) membrane, for monitoring polar organic micropollutants (personal care products, pharmaceuticals, and illicit drugs) in wastewater effluent. In situ calibration showed linear uptake for the majority of detected micropollutants over 9 days of deployment. Sampling rates (RS) were determined for 59 compounds and were generally in the range of 0.01-0.10 L day(-1). The Chemcatcher was also suitable for collecting chiral micropollutants and maintaining their enantiomeric distribution during deployment. This is essential for their future use in developing more accurate environmental risk assessments at the enantiomeric level. Application of calibration data in a subsequent monitoring study showed that the concentration estimated for 92% of micropollutants was within a factor of 2 of the known concentration. However, their application in a legislative context will require further understanding of the properties and mechanisms controlling micropollutant uptake to improve the accuracy of reported concentrations.
Science of The Total Environment | 2017
Bruce Petrie; Kathryn Proctor; Jane Youdan; Ruth Barden; Barbara Kasprzyk-Hordern
It is essential to monitor the release of organic micropollutants from wastewater treatment plants (WWTPs) for developing environmental risk assessment and assessing compliance with legislative regulation. In this study the impact of sampling strategy on the quantitative determination of micropollutants in effluent wastewater was investigated. An extended list of 90 chiral and achiral micropollutants representing a broad range of biological and physico-chemical properties were studied simultaneously for the first time. During composite sample collection micropollutants can degrade resulting in the under-estimation of concentration. Cooling collected sub-samples to 4°C stabilised ≥81 of 90 micropollutants to acceptable levels (±20% of the initial concentration) in the studied effluents. However, achieving stability for all micropollutants will require an integrated approach to sample collection (i.e., multi-bottle sampling with more than one stabilisation method applied). Full-scale monitoring of effluent revealed time-paced composites attained similar information to volume-paced composites (influent wastewater requires a sampling mode responsive to flow variation). The option of monitoring effluent using time-paced composite samplers is advantageous as not all WWTPs have flow controlled samplers or suitable sites for deploying portable flow meters. There has been little research to date on the impact of monitoring strategy on the determination of chiral micropollutants at the enantiomeric level. Variability in wastewater flow results in a dynamic hydraulic retention time within the WWTP (and upstream sewerage system). Despite chiral micropollutants being susceptible to stereo-selective degradation, no diurnal variability in their enantiomeric distribution was observed. However, unused medication can be directly disposed into the sewer network creating short-term (e.g., daily) changes to their enantiomeric distribution. As enantio-specific toxicity is observed in the environment, similar resolution of enantio-selective analysis to more routinely applied achiral methods is needed throughout the monitoring period for accurate risk assessment.
Science of The Total Environment | 2019
Bruce Petrie; Luigi Lopardo; Kathryn Proctor; Jane Youdan; Ruth Barden; Barbara Kasprzyk-Hordern
The plasticizer bisphenol-A (BPA) is common to municipal wastewaters and can exert toxicity to exposed organisms in the environment. Here BPA concentration at 5 sewage treatment works (STW) and distribution throughout a river catchment in South West UK were investigated. Sampling sites included influent and effluent wastewater (n = 5), river water (n = 7) and digested sludge (n = 2) which were monitored for 7 consecutive days. Findings revealed average BPA loads in influent wastewater at two STWs were 10-37 times greater than the other wastewaters monitored. Concentrations up to ~100 μg L-1 were measured considerably higher than previously reported for municipal wastewaters. Temporal variability throughout the week (i.e., highest concentrations during weekdays) suggests these high concentrations are linked with industrial activity. Despite ≥90% removal during wastewater treatment, notable concentrations remained in tested effluent (62-892 ng L-1). However, minimal impact on BPA concentrations in river water was observed for any of the effluents. The maximum BPA concentration found in river water was 117 ng L-1 which is considerably lower than the current predicted no effect concentration of 1.6 μg L-1. Nevertheless, analysis of digested sludge from sites which received these elevated BPA levels revealed average concentrations of 4.6 ± 0.3 and 38.7 ± 5.4 μg g-1. These sludge BPA concentrations are considerably greater than previously reported and are attributed to the high BPA loading in influent wastewater. A typical sludge application regime to agricultural land would result in a predicted BPA concentration of 297 ng g-1 in soil. Further studies are needed on the toxicological thresholds of exposed terrestrial organisms in amended soils to better assess the environmental risk here.
Science of The Total Environment | 2018
Bruce Petrie; Shawn Rood; Benjamin D. Smith; Kathryn Proctor; Jane Youdan; Ruth Barden; Barbara Kasprzyk-Hordern
The distribution of micropollutants in biotic phases of horizontal sub-surface flow (HSSF) constructed wetlands was investigated. 88 diverse micropollutants (personal care products, pharmaceuticals and illicit drugs) were monitored for in full-scale HSSF steel slag and gravel beds to assess their fate and behaviour during tertiary wastewater treatment. Of the studied micropollutants 54 were found in receiving and treated wastewaters. Treatment reduced concentrations of several micropollutants by >50% (removal range -112% to 98%) and resulted in changes to the stereo-isomeric composition of chiral species. For example, stereo-selective changes were observed for 3,4-methylenedioxymethamphetamine (MDMA) and atenolol during HSSF constructed wetland treatment for the first time. Analysis of sludge present within the HSSF beds found 37 micropollutants to be present. However, concentrations for the majority of these micropollutants were not considered high enough to suggest partitioning into sludge was a contributing mechanism of removal. Nevertheless the preservative methylparaben was found at 2772mgbed-1. Its daily removal from wastewater of 3.4mgd-1 indicates partitioning and accumulation in sludge contributes to its removal. Other micropollutants found at high levels in sludge (relative to their overall removals) were the antidepressants sertraline and fluoxetine, and the metabolite desmethylcitalopram. Furthermore, process balances indicated uptake and metabolism by Phragmites australis (Cav.) Trin. ex Steud did not contribute significantly to micropollutant removal. However analysis of plant tissues evidenced uptake, metabolism and accumulation of recalcitrant micropollutants such as ketamine and carbamazepine. It is considered that the rate of uptake was too slow to have a notable impact on removal at the 14h hydraulic retention time. Despite evidence of other removal mechanisms at play (e.g., partitioning into sludge and plant uptake), findings indicate biodegradation is the dominant mechanism of micropollutant removal in HSSF constructed wetlands.
Analytica Chimica Acta | 2017
Bruce Petrie; Benjamin D. Smith; Jane Youdan; Ruth Barden; Barbara Kasprzyk-Hordern
Testing the Waters 2017: 3rd International Conference on Wastewater-based Epidermology | 2017
Erika Castrignanò; Felicity Elder; Edward J. Feil; Simon E. Lewis; Nick Cartwright; Ruth Barden; Barbara Kasprzyk-Hordern