Ruth F. Curtain
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruth F. Curtain.
Archive | 1995
Ruth F. Curtain; Hans Zwart
1 Introduction.- 1.1 Motivation.- 1.2 Systems theory concepts in finite dimensions.- 1.3 Aims of this book.- 2 Semigroup Theory.- 2.1 Strongly continuous semigroups.- 2.2 Contraction and dual semigroups.- 2.3 Riesz-spectral operators.- 2.4 Delay equations.- 2.5 Invariant subspaces.- 2.6 Exercises.- 2.7 Notes and references.- 3 The Cauchy Problem.- 3.1 The abstract Cauchy problem.- 3.2 Perturbations and composite systems.- 3.3 Boundary control systems.- 3.4 Exercises.- 3.5 Notes and references.- 4 Inputs and Outputs.- 4.1 Controllability and observability.- 4.2 Tests for approximate controllability and observability.- 4.3 Input-output maps.- 4.4 Exercises.- 4.5 Notes and references.- 5 Stability, Stabilizability, and Detectability.- 5.1 Exponential stability.- 5.2 Exponential stabilizability and detectability.- 5.3 Compensator design.- 5.4 Exercises.- 5.5 Notes and references.- 6 Linear Quadratic Optimal Control.- 6.1 The problem on a finite-time interval.- 6.2 The problem on the infinite-time interval.- 6.3 Exercises.- 6.4 Notes and references.- 7 Frequency-Domain Descriptions.- 7.1 The Callier-Desoer class of scalar transfer functions.- 7.2 The multivariable extension.- 7.3 State-space interpretations.- 7.4 Exercises.- 7.5 Notes and references.- 8 Hankel Operators and the Nehari Problem.- 8.1 Frequency-domain formulation.- 8.2 Hankel operators in the time domain.- 8.3The Nehari extension problem for state linear systems.- 8.4 Exercises.- 8.5 Notes and references.- 9 Robust Finite-Dimensional Controller Synthesis.- 9.1 Closed-loop stability and coprime factorizations.- 9.2 Robust stabilization of uncertain systems.- 9.3 Robust stabilization under additive uncertainty.- 9.4 Robust stabilization under normalized left-coprime-factor uncertainty.- 9.5 Robustness in the presence of small delays.- 9.6 Exercises.- 9.7 Notes and references.- A. Mathematical Background.- A.1 Complex analysis.- A.2 Normed linear spaces.- A.2.1 General theory.- A.2.2 Hilbert spaces.- A.3 Operators on normed linear spaces.- A.3.1 General theory.- A.3.2 Operators on Hilbert spaces.- A.4 Spectral theory.- A.4.1 General spectral theory.- A.4.2 Spectral theory for compact normal operators.- A.5 Integration and differentiation theory.- A.5.1 Integration theory.- A.5.2 Differentiation theory.- A.6 Frequency-domain spaces.- A.6.1 Laplace and Fourier transforms.- A.6.2 Frequency-domain spaces.- A.6.3 The Hardy spaces.- A.7 Algebraic concepts.- A.7.1 General definitions.- A.7.2 Coprime factorizations over principal ideal domains.- A.7.3 Coprime factorizations over commutative integral domains.- References.- Notation.
Siam Journal on Control and Optimization | 1988
Keith Glover; Ruth F. Curtain
The class of linear infinite-dimensional systems with finite-dimensional inputs and outputs whose impulse response h satisfies
Automatica | 2009
Ruth F. Curtain; Kirsten Morris
h \in L_1 \cap L_2 (0,\infty ;\mathbb{C}^{p \times m} )
Systems & Control Letters | 1986
Ruth F. Curtain; Keith Glover
and induces a nuclear Hankel operator is said to be of nuclear type. For this class of systems it is shown that balanced or output normal realisations always exist and their truncations converge to the original system in various topologies. Furthermore, explicit
IEEE Transactions on Automatic Control | 1997
George Weiss; Ruth F. Curtain
L_\infty
Siam Journal on Control and Optimization | 1984
Ruth F. Curtain
bounds on the transfer function errors,
Theory of Computing Systems \/ Mathematical Systems Theory | 1988
Ruth F. Curtain
L_1
Siam Journal on Control and Optimization | 1986
Ruth F. Curtain
and
International Journal of Control | 1990
Ruth F. Curtain
L_2
Automatica | 1988
J. Bontsema; Ruth F. Curtain; J. M. Schumachers
bounds on the impulse response errors, and Hilbert-Schmidt and nuclear bounds on the Hankel operator errors are obtained. These truncations also generate an approximating sequence to the optimal Hankel-norm approximations to the original system, and various error bounds of these approximants are deduced.